首页> 外文期刊>Biomedical signal processing and control >Multimodality medical image fusion algorithm based on gradient minimization smoothing filter and pulse coupled neural network
【24h】

Multimodality medical image fusion algorithm based on gradient minimization smoothing filter and pulse coupled neural network

机译:基于梯度最小化平滑滤波器和脉冲耦合神经网络的多模态医学图像融合算法

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel multimodality medical image fusion algorithm which involves L-0 gradient minimization smoothing filter (GMSF) and pulse coupled neural network (PCNN). Firstly, an excellent multi-scale edge-preserving decomposition framework based on GMSF is proposed to decompose each source image into one base image and a series of detail images. For extracting and preserving more salient features and detail information, different fusion rules are designed to fuse the separated subimages. The base images are fused using the regional weighted sum of pixel energy and gradient energy, and a biologically inspired feedback neural network is used to fuse the detail images. The final fused image is obtained by synthesizing the fused base image and detail images. Experimental results on several datasets of CT and MRI images show that the proposed algorithm outperforms other compared methods in terms of both subjective and objective assessment. (C) 2016 Elsevier Ltd. All rights reserved.
机译:我们提出了一种新颖的多模态医学图像融合算法,该算法涉及L-0梯度最小化平滑滤波器(GMSF)和脉冲耦合神经网络(PCNN)。首先,提出了一种基于GMSF的优良的多尺度边缘保持分解框架,将每个源图像分解为一个基础图像和一系列细节图像。为了提取和保留更多的显着特征和细节信息,设计了不同的融合规则以融合分离的子图像。基本图像使用像素能量和梯度能量的区域加权总和进行融合,并使用生物学启发的反馈神经网络融合细节图像。通过合成融合的基础图像和细节图像获得最终的融合图像。在几个CT和MRI图像数据集上的实验结果表明,该算法在主观和客观评估方面均优于其他比较方法。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号