首页> 外文期刊>Biomedical signal processing and control >Motion artifact removal from single channel electroencephalogram signals using singular spectrum analysis
【24h】

Motion artifact removal from single channel electroencephalogram signals using singular spectrum analysis

机译:使用奇异频谱分析从单通道脑电图信号中去除运动伪影

获取原文
获取原文并翻译 | 示例

摘要

In ambulatory electroencephalogram (EEG) health care systems, recorded EEG signals often contaminated by motion artifacts. In this paper, we proposed a singular spectrum analysis (SSA) technique with new grouping criteria to remove the motion artifact from a single channel EEG signal. In order to remove the motion artifactfrom a single channel EEG signal, we considered the eigenvectors (basis vectors) corresponding to motion artifact are grouped or identified based on their local mobility, which is a signal complexity measure. However, as the local mobility of eigenvectors associated to the motion artifact are small, a threshold of 0.1 is set to identify them. The motion artifact signal is estimated using the identified eigenvectors and subtracted from the contaminated EEG signal to obtain the corrected EEG signal. The proposed technique is tested on 21 single channel real EEG signals contaminated by motion artifact and compared the results with the existing combined ensemble empirical mode decomposition and canonical correlation analysis (EEMD-CCA) technique. The simulation results show that the proposed modified SSA enjoys an improvement in the signal to noise ratio and the percentage reduction in artifact. Moreover, as the ambulatory EEG systems are battery operated, use of high computational signal processing techniques will reduce the battery lifetime. Hence, low computational signal processing techniques are greatly demanded in such applications. Thus, we have also evaluated the computational complexity of the proposed technique and compared with EEMD-CCA. We found that the proposed modified SSA technique significantly reduces the computational complexity and thereby lower power consumption compared to the EEMD-CCA. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在动态脑电图(EEG)卫生保健系统中,记录的EEG信号经常被运动伪影污染。在本文中,我们提出了一种具有新分组标准的奇异频谱分析(SSA)技术,可从单通道EEG信号中去除运动伪像。为了从单通道EEG信号中去除运动伪像,我们认为对应于运动伪像的特征向量(基本向量)是基于它们的局部迁移率进行分组或标识的,这是信号复杂性的度量。但是,由于与运动伪影相关的特征向量的局部迁移率较小,因此将阈值设置为0.1以识别它们。使用所识别的特征向量来估计运动伪像信号,并从污染的EEG信号中减去该运动伪像信号以获得校正的EEG信号。该技术在21个运动伪影污染的单通道真实EEG信号上进行了测试,并将结果与​​现有的组合整体经验模式分解和规范相关分析(EEMD-CCA)技术进行了比较。仿真结果表明,所提出的改进的SSA在信噪比和伪像百分比降低方面得到了改善。此外,由于动态脑电图系统由电池供电,因此使用高计算信号处理技术将缩短电池寿命。因此,在这种应用中非常需要低计算信号处理技术。因此,我们还评估了所提出技术的计算复杂度,并与EEMD-CCA进行了比较。我们发现,与EEMD-CCA相比,提出的改进的SSA技术大大降低了计算复杂度,从而降低了功耗。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号