首页> 外文期刊>Biomedical signal processing and control >Efficient block-sparse model-based algorithm for photoacoustic image reconstruction
【24h】

Efficient block-sparse model-based algorithm for photoacoustic image reconstruction

机译:基于高效块稀疏模型的光声图像重建算法

获取原文
获取原文并翻译 | 示例

摘要

The model-based algorithm for photoacoustic imaging (PAI) has been proved to be stable and accurate. However, its reconstruction is computationally burdensome which limits its application in the practical PAL In this paper, we proposed a block-sparse discrete cosine transform (BS-DCT) model-based PAI reconstruction algorithm in order to improve the computational efficiency of the model-based PAI reconstruction. We adopted the discrete cosine transform (DCT) to eliminate the minor coefficients and reduce the data scale. A block-sparse based iterative method was proposed to accomplish the image reconstruction. Due to its block independent nature, we used the CPU-based parallel calculation implementation to accelerate the reconstruction. During the iterative reconstruction, the number of required iterations was reduced by adopting the fast-converging optimization Barzilai-Borwein method. The numerical simulations and in-vitro experiments were carried out. The results has shown that the reconstruction quality is equivalent to the state-of-the-art iterative algorithms. Our algorithm requires less number of iterations with a reduced data scale and significant acceleration through the parallel calculation implementation. In conclusion, the BS-DCT algorithm may be an effectively accelerated practical algorithm for the PAI reconstruction. (C) 2015 Elsevier Ltd. All rights reserved.
机译:已经证明基于模型的光声成像(PAI)算法是稳定且准确的。然而,其重建计算量大,限制了其在实际PAL中的应用。在本文中,我们提出了一种基于块稀疏离散余弦变换(BS-DCT)模型的PAI重建算法,以提高模型的计算效率。基于PAI的重建。我们采用离散余弦变换(DCT)来消除次要系数并减小数据规模。提出了一种基于块稀疏的迭代方法来完成图像重建。由于其独立于块的性质,我们使用了基于CPU的并行计算实现来加快重建速度。在迭代重建过程中,通过采用快速收敛的优化Barzilai-Borwein方法减少了所需的迭代次数。进行了数值模拟和体外实验。结果表明,重构质量等同于最新的迭代算法。我们的算法需要较少的迭代次数,并通过并行计算实现减少了数据规模,并显着加快了速度。总之,BS-DCT算法可能是用于PAI重建的有效加速实用算法。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号