首页> 外文期刊>Biomedical signal processing and control >A regularised EEG informed Kalman filtering algorithm
【24h】

A regularised EEG informed Kalman filtering algorithm

机译:一种正则化的脑电信息卡尔曼滤波算法

获取原文
获取原文并翻译 | 示例

摘要

The conventional Kalman filter assumes a constant process noise covariance according to the system's dynamics. However, in practice, the dynamics might alter and the initial model for the process noise may not be adequate to adapt to abrupt dynamics of the system. In this paper, we provide a novel informed Kalman filter (IKF) which is informed by an extrinsic data channel carrying information about the system's future state. Thus, each state can be represented with a corresponding process noise covariance, i.e. the Kalman gain is automatically adjusted according to the detected state. As a real-world application, we demonstrate for the first time how the analysis of electroencephalogram (EEG) can be used to predict the voluntary body movement and inform the tracking Kalman algorithm about a possible state transition. Furthermore, we provide a rigorous analysis to establish a relationship between the Kalman performance and the detection accuracy. Simulations on both synthetic and real-world data support our analysis. (C) 2015 Elsevier Ltd. All rights reserved.
机译:常规的卡尔曼滤波器根据系统的动力学假定恒定的过程噪声协方差。但是,实际上,动力学可能会发生变化,过程噪声的初始模型可能不足以适应系统的突然动力学。在本文中,我们提供了一种新颖的知情卡尔曼滤波器(IKF),它由一个外部数据信道提供,该信道承载有关系统未来状态的信息。因此,可以用对应的过程噪声协方差来表示每个状态,即,根据检测到的状态自动调节卡尔曼增益。作为一个实际应用,我们首次演示了如何使用脑电图(EEG)分析来预测身体的自愿运动,并向跟踪Kalman算法告知可能的状态转换。此外,我们提供了严格的分析,以建立卡尔曼性能与检测精度之间的关系。综合和真实数据的仿真支持我们的分析。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号