首页> 外文期刊>Biomedical signal processing and control >Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma
【24h】

Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma

机译:从数字眼底图像中分割视盘和视杯以评估青光眼

获取原文
获取原文并翻译 | 示例

摘要

Glaucoma is an eye disease that results in irreversible loss of vision. The manual examination of optic disk (OD) is a standard procedure used for detecting glaucoma. This paper presents a glaucoma expert system based on the segmentations of OD and optic cup attained from color fundus images. A novel implicit region based active contour model is proposed for OD segmentation which incorporates the image information at the point of interest from multiple image channels to have robustness against the variations found in and around the OD region. A novel optic cup segmentation method is also proposed based on the structural and gray level properties of cup. Based on the precise information about the contours of OD and cup different parameters are calculated for glaucoma assessment. The proposed system is evaluated on 59 retinal images comprising 17 normal and 42 glaucomatous images against the groundtruths given by an experienced ophthalmologist. The proposed OD segmentation method achieved an average F-score of 0.975, average boundary distance of 10.112 pixel and average correlation coefficient of 0.916. The cup segmentation method attained an average F-score of 0.89, average boundary distance of 18.927 pixel and average correlation coefficient of 0.835. The mean error and standard deviation of the error sigma for all the parameters are much smaller in glaucomatous images compared to normal images. This indicates high sensitivity of the proposed method in glaucoma assessment. (C) 2015 Elsevier Ltd. All rights reserved.
机译:青光眼是一种导致无法挽回的视力丧失的眼病。手动检查视盘(OD)是用于检测青光眼的标准程序。本文提出了一种基于从彩色眼底图像获得的OD和视杯分割的青光眼专家系统。提出了一种新颖的基于隐式区域的主动轮廓模型用于OD分割,该模型将感兴趣的点上的图像信息合并到多个图像通道中,以抵抗OD区域及其周围区域的变化。根据杯的结构和灰度特性,提出了一种新颖的杯分割方法。根据有关OD轮廓和杯状轮廓的精确信息,计算出不同参数用于青光眼评估。针对有经验的眼科医生给出的地面真相,在59张视网膜图像(包括17张正常和42张青光眼图像)上评估了拟议的系统。所提出的OD分割方法实现了平均F得分为0.975,平均边界距离为10.112像素和平均相关系数为0.916。杯子分割方法的平均F分数为0.89,平均边界距离为18.927像素,平均相关系数为0.835。与正常图像相比,青光眼图像中所有参数的平均误差和误差总和的标准偏差要小得多。这表明该方法在青光眼评估中具有很高的敏感性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号