首页> 外文期刊>Biomedical signal processing and control >Robust heart rate estimation from multimodal physiological signals using beat signal quality index based majority voting fusion method
【24h】

Robust heart rate estimation from multimodal physiological signals using beat signal quality index based majority voting fusion method

机译:使用基于拍频信号质量指数的多数投票融合方法从多模态生理信号中进行稳健的心率估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a new beat signal quality index (SQI) based majority voting fusion algorithm for robust heart rate (HR) estimation from multimodal physiological signals, namely, cardiovascular and non cardiovascular signals. A novel statistical and probabilistic based beat SQI assessment method has been developed for voting fusion. Modified slope sum function and Teager-Kaiser energy operator method has been used for beat detection in electrocardiogram (ECG) and non-cardiovascular signals. The performance of majority voting fusion method in beat detection has been evaluated on PhysioNet/CinC Challenge-2014 public training dataset and has achieved overall score of 94.93%. The performance of the algorithm has been tested on PhysioNet/CinC Challenge-2014 hidden test set and MIT-BIH Polysomnographic dataset and it has achieved scores of 90.89% and 99.77% respectively. The proposed method has improved average rMSE of HR estimate from 15.54 bpm to 0.24 bpm for noisy ECG signals and from 11.68 bpm to 0.84 bpm for noisy ECG and noisy ABP signals of PhysioNet/CinC Challenge-2014 public training database. The majority voting fusion method has yielded HR estimate with average rMSE of 1.80 bpm, when both ECG (avg. rMSE of 4.58 bpm) and ABP (avg. rMSE of 3.96 bpm) signals of MIT-BIH Polysomnographic dataset are noisy. The use of multimodal signals in fusion has increased the accuracy of HR estimates in noisy ECG and ABP signals. The majority voting fusion algorithm based on beat SQJ has enabled effective and reliable use of non-cardiovascular signals in robust HR estimation from multimodal physiological signals, even when both ECG and ABP signals are noisy. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在本文中,我们提出了一种基于新的心跳信号质量指数(SQI)的多数表决融合算法,用于从多峰生理信号(即心血管和非心血管信号)估计鲁棒心率(HR)。一种新的基于统计和概率的心跳SQI评估方法已被开发用于投票融合。修正的斜率和函数和Teager-Kaiser能量算子方法已用于心电图(ECG)和非心血管信号的搏动检测。已在PhysioNet / CinC Challenge-2014公共培训数据集上评估了多数投票融合方法在拍子检测中的性能,并获得了94.93%的总得分。该算法的性能已经在PhysioNet / CinC Challenge-2014隐藏测试集和MIT-BIH多导睡眠图数据集上进行了测试,分别达到了90.89%和99.77%。对于嘈杂的ECG信号,建议的方法已将HR估计值的平均rMSE值从15.54 bpm提高到0.24 bpm,对于PhysioNet / CinC Challenge-2014公共培训数据库的嘈杂的ECG和嘈杂的ABP信号,其平均rMSE从11.68 bpm提高到0.84 bpm。当MIT-BIH多导睡眠图数据集的ECG(平均rMSE为4.58 bpm)和ABP(平均rMSE为3.96 bpm)信号都嘈杂时,多数表决融合方法已产生HR估计值,平均rMSE为1.80 bpm。在融合中使用多峰信号提高了嘈杂的ECG和ABP信号中HR估计的准确性。基于心跳SQJ的多数表决融合算法已实现了有效,可靠地使用非心血管信号进行多模态生理信号的可靠HR估计,即使ECG和ABP信号都嘈杂时也是如此。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号