首页> 外文期刊>Biomedical Microdevices >Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization
【24h】

Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization

机译:具有可溶解输送针的超小型超顺应神经探针:设计,制造和表征

获取原文
获取原文并翻译 | 示例

摘要

Stable chronic functionality of intracortical probes is of utmost importance toward realizing clinical application of brain-machine interfaces. Sustained immune response from the brain tissue to the neural probes is one of the major challenges that hinder stable chronic functionality. There is a growing body of evidence in the literature that highly compliant neural probes with sub-cellular dimensions may significantly reduce the foreign-body response, thereby enhancing long term stability of intracortical recordings. Since the prevailing commercial probes are considerably larger than neurons and of high stiffness, new approaches are needed for developing miniature probes with high compliance. In this paper, we present design, fabrication, and in vitro evaluation of ultra-miniature (2.7 mu m x 10 mu m cross section), ultra-compliant (1.4 x 10(-2) mu N/mu m in the axial direction, and 2.6 x 10(-5) mu N/mu m and 1.8 x 10(-6) mu N/mu m in the lateral directions) neural probes and associated probe-encasing biodissolvable delivery needles toward addressing the aforementioned challenges. The high compliance of the probes is obtained by micron-scale cross-section and meandered shape of the parylene-C insulated platinum wiring. Finite-element analysis is performed to compare the strains within the tissue during micromotion when using the ultra-compliant meandered probes with that when using stiff silicon probes. The standard batch microfabrication techniques are used for creating the probes. A dissolvable delivery needle that encases the probe facilitates failure-free insertion and precise placement of the ultra-compliant probes. Upon completion of implantation, the needle gradually dissolves, leaving behind the ultra-compliant neural probe. A spin-casting based micromolding approach is used for the fabrication of the needle. To demonstrate the versatility of the process, needles from different biodissolvable materials, as well as two-dimensional needle arrays with different geometries and dimensions, are fabricated. Further, needles incorporating anti-inflammatory drugs are created to show the co-delivery potential of the needles. An automated insertion device is developed for repeatable and precise implantation of needle-encased probes into brain tissue. Insertion of the needles without mechanical failure, and their subsequent dissolution are demonstrated. It is concluded that ultra-miniature, ultra-compliant probes and associated biodissolvable delivery needles can be successfully fabricated, and the use of the ultra-compliant meandered probes results in drastic reduction in strains imposed in the tissue as compared to stiff probes, thereby showing promise toward chronic applications.
机译:皮层内探针的稳定的慢性功能对于实现脑机接口的临床应用至关重要。从脑组织到神经探针的持续免疫应答是阻碍稳定的慢性功能的主要挑战之一。文献中越来越多的证据表明,具有亚细胞尺寸的高度顺应性神经探针可能会显着降低异物反应,从而增强皮质内记录的长期稳定性。由于流行的商业探针比神经元大得多并且具有高刚度,因此需要新的方法来开发具有高顺应性的微型探针。在本文中,我们介绍了超微型(2.7μmx10μm横截面),超顺应性(轴向1.4 x 10(-2)μN/μm)的设计,制造和体外评估,和2.6 x 10(-5)μN /μm,横向为1.8 x 10(-6)μN /μm的神经探针和相关的探针可生物溶解的输送针,以应对上述挑战。探针的高顺应性是通过聚对二甲苯-C绝缘铂导线的微米级横截面和弯曲形状获得的。进行有限元分析,以比较使用超顺应曲折式探针和使用坚硬硅探针时微运动过程中组织内的应变。使用标准的批量微制造技术来创建探针。包裹探针的可溶解输送针有助于无顺从探针的插入和精确放置。植入完成后,针逐渐溶解,留下超顺应性神经探针。基于旋转铸造的微成型方法被用于制造针。为了证明该方法的多功能性,制造了来自不同生物可溶材料的针,以及具有不同几何形状和尺寸的二维针阵列。此外,产生了掺入抗炎药的针头以显示针头的共递送潜力。开发了一种自动插入设备,用于将套有针的探针可重复且精确地植入脑组织。证明了在没有机械故障的情况下插入针头及其随后的溶解。结论是,可以成功地制造出超小型,超顺应性探针和相关的可生物溶解的输送针,并且与刚性探针相比,超顺应性曲折探针的使用可显着减少施加在组织中的应变。对长期应用的承诺。

著录项

  • 来源
    《Biomedical Microdevices》 |2016年第6期|97.1-97.20|共20页
  • 作者单位

    Carnegie Mellon Univ, Dept Mech Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA;

    Carnegie Mellon Univ, Dept Elect & Comp Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA;

    Univ Pittsburgh, Dept Bioengn, 4200 Fifth Ave, Pittsburgh, PA 15260 USA|Univ Pittsburgh, Ctr Neural Basis Cognit, 4400 Fifth Ave, Pittsburgh, PA 15213 USA|Univ Pittsburgh, McGowan Inst Regenerat Med, 450 Technol Dr,Ste 300, Pittsburgh, PA 15219 USA|Univ Pittsburgh, NeuroTech Ctr, Inst Brain, 3501 Fifth Ave, Pittsburgh, PA 15261 USA;

    Carnegie Mellon Univ, Dept Elect & Comp Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA;

    Carnegie Mellon Univ, Dept Mech Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA;

    Carnegie Mellon Univ, Dept Biomed Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA;

    Univ Pittsburgh, Dept Bioengn, 4200 Fifth Ave, Pittsburgh, PA 15260 USA|Univ Pittsburgh, Ctr Neural Basis Cognit, 4400 Fifth Ave, Pittsburgh, PA 15213 USA|Univ Pittsburgh, McGowan Inst Regenerat Med, 450 Technol Dr,Ste 300, Pittsburgh, PA 15219 USA;

    Carnegie Mellon Univ, Dept Mech Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA|Carnegie Mellon Univ, Dept Elect & Comp Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA|Carnegie Mellon Univ, Dept Biomed Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA|Carnegie Mellon Univ, Inst Robot, 5000 Forbes Ave, Pittsburgh, PA 15213 USA;

    Carnegie Mellon Univ, Dept Mech Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA|Carnegie Mellon Univ, Dept Biomed Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA|Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Brain-computer interfaces; Neural probes; Flexible probes; Dissolvable polymer microneedles; Micromolding; Micromotion; Microelectrode;

    机译:脑机接口;神经探针;柔性探针;可溶性聚合物微针;微成型;微运动;微电极;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号