首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Detection of Correct and Incorrect Measurements in Real-Time Continuous Glucose Monitoring Systems by Applying a Postprocessing Support Vector Machine
【24h】

Detection of Correct and Incorrect Measurements in Real-Time Continuous Glucose Monitoring Systems by Applying a Postprocessing Support Vector Machine

机译:应用后处理支持向量机在实时连续葡萄糖监测系统中检测正确和不正确的测量值

获取原文
获取原文并翻译 | 示例

摘要

Support vector machines (SVMs) are an attractive option for detecting correct and incorrect measurements in real-time continuous glucose monitoring systems (RTCGMSs), because their learning mechanism can introduce a postprocessing strategy for imbalanced datasets. The proposed SVM considers the geometric mean to obtain a more balanced performance between sensitivity and specificity. To test this approach, 23 critically ill patients receiving insulin therapy were monitored over 72 h using an RTCGMS, and a dataset of 537 samples, classified according to International Standards Organization (ISO) criteria (372 correct and 165 incorrect measurements), was obtained. The results obtained were promising for patients with septic shock or with sepsis, for which the proposed system can be considered as reliable. However, this approach cannot be considered suitable for patients without sepsis.
机译:支持向量机(SVM)是用于在实时连续葡萄糖监测系统(RTCGMS)中检测正确和不正确测量的一种有吸引力的选择,因为它们的学习机制可以引入不平衡数据集的后处理策略。拟议的支持向量机考虑了几何平均值,以在敏感性和特异性之间获得更平衡的性能。为了测试这种方法,使用RTCGMS在23小时内对23名接受胰岛素治疗的重症患者进行了监测,并获得了537个样本的数据集,这些样本根据国际标准组织(ISO)标准进行了分类(372个正确的测量结果和165个不正确的测量结果)。对于脓毒性休克或败血症的患者,所获得的结果是有希望的,对于该患者而言,所提出的系统可以认为是可靠的。但是,这种方法不能被认为适用于无败血症的患者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号