首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Patch-Based Nonlinear Image Registration for Gigapixel Whole Slide Images
【24h】

Patch-Based Nonlinear Image Registration for Gigapixel Whole Slide Images

机译:基于修补程序的千兆像素整个幻灯片图像的非线性图像配准

获取原文
获取原文并翻译 | 示例

摘要

Objective: Image registration of whole slide histology images allows the fusion of fine-grained information-like different immunohistochemical stains-from neighboring tissue slides. Traditionally, pathologists fuse this information by looking subsequently at one slide at a time. If the slides are digitized and accurately aligned at cell level, automatic analysis can be used to ease the pathologist's work. However, the size of those images exceeds the memory capacity of regular computers. Methods: We address the challenge to combine a global motion model that takes the physical cutting process of the tissue into account with image data that is not simultaneously globally available. Typical approaches either reduce the amount of data to be processed or partition the data into smaller chunks to be processed separately. Our novel method first registers the complete images on a low resolution with a nonlinear deformation model and later refines this result on patches by using a second nonlinear registration on each patch. Finally, the deformations computed on all patches are combined by interpolation to form one globally smooth nonlinear deformation. The NGF distance measure is used to handle multistain images. Results: The method is applied to ten whole slide image pairs of human lung cancer data. The alignment of 85 corresponding structures is measured by comparing manual segmentations from neighboring slides. Their offset improves significantly, by at least 15%, compared to the low-resolution nonlinear registration. Conclusion/Significance: The proposed method significantly improves the accuracy of multistain registration which allows us to compare different antibodies at cell level.
机译:目的:对整个玻片组织学图像进行图像配准,可以融合来自邻近组织玻片的细粒度信息(如不同的免疫组织化学染色剂)。传统上,病理学家通过随后一次查看一张幻灯片来融合这些信息。如果将载玻片数字化并在细胞水平上准确对齐,则可以使用自动分析来简化病理学家的工作。但是,这些图像的大小超过了常规计算机的存储容量。方法:我们解决了将全局运动模型(该过程将组织的物理切割过程考虑在内)与无法同时全局获得的图像数据相结合的挑战。典型的方法要么减少要处理的数据量,要么将数据分成较小的块以分别处理。我们的新方法首先使用非线性变形模型在低分辨率下配准完整图像,然后通过在每个色块上使用第二个非线性配准对结果进行精细化。最后,通过插值法对所有面片上计算出的变形进行组合,以形成一个整体上平滑的非线性变形。 NGF距离度量用于处理多色图像。结果:该方法适用于十对人类肺癌数据的完整幻灯片图像对。通过比较来自相邻载玻片的手动分割来测量85个相应结构的对齐方式。与低分辨率非线性配准相比,它们的偏移显着提高了至少15%。结论/意义:所提出的方法显着提高了多染色配准的准确性,这使我们能够在细胞水平上比较不同的抗体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号