首页> 外文期刊>IEEE Transactions on Biomedical Engineering >User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach
【24h】

User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach

机译:从单个腕戴式加速度计进行的用户独立的体育活动识别:一种基于模板匹配的方法

获取原文
获取原文并翻译 | 示例

摘要

: To investigate the accuracy of template matching for classifying sports activities using the acceleration signal recorded with a wearable sensor. : A population of 29 normal weight and 19 overweight subjects was recruited to perform eight common sports activities, while body movement was measured using a triaxial accelerometer placed at the wrist. User- and axis-independent acceleration signal templates were automatically extracted to represent each activity category and recognize activity types. Five different similarity measures between example signals and templates were compared: Euclidean distance, dynamic time warping (DTW), derivative DTW, correlation and an innovative index, and combining distance and correlation metrics (). Template-based activity recognition was compared to statistical-learning classifiers, such as Naïve Bayes, decision tree, logistic regression (LR), and artificial neural network (ANN) trained using time- and frequency-domain signal features. Each algorithm was tested on data from a holdout group of 15 normal weight and 19 overweight subjects. : The index outperformed other template-matching metrics by achieving recognition rate above 80% for the majority of the activities. Template matching showed robust classification accuracy when tested on unseen data and in case of limited training examples. LR and ANN achieved the highest overall recognition accuracy 85% but showed to be more vulnerable to misclassification error than template matching on overweight subjects’ data. : Template matching can be used to classify sports activities using the wrist acceleration signal. : Automatically extracted template prototypes from the acceleration signal may be used to- enhance accuracy and generalization properties of statistical-learning classifiers.
机译::使用可穿戴式传感器记录的加速度信号,调查用于对体育活动进行分类的模板匹配的准确性。 :招募了29名正常体重和19名超重受试者进行八项常见的体育活动,同时使用置于手腕的三轴加速度计测量了身体运动。自动提取独立于用户和轴的加速度信号模板,以代表每个活动类别并识别活动类型。比较了示例信号和模板之间的五个不同的相似性度量:欧氏距离,动态时间扭曲(DTW),导数DTW,相关性和创新索引,以及距离和相关性度量的组合()。将基于模板的活动识别与使用时域和频域信号特征训练的统计学习分类器(如朴素贝叶斯,决策树,逻辑回归(LR)和人工神经网络(ANN))进行了比较。每种算法均根据15名正常体重和19名超重受试者的坚持小组的数据进行了测试。 :该索引在大多数活动中的识别率均达到80%以上,从而胜过其他模板匹配指标。在对看不见的数据进行测试时以及在训练样本有限的情况下,模板匹配显示出强大的分类准确性。 LR和ANN的整体识别准确率最高,达到了85%,但与超重受试者数据的模板匹配相比,它更容易遭受错误分类错误的影响。 :模板匹配可用于通过手腕加速度信号对体育活动进行分类。 :从加速度信号中自动提取的模板原型可用于提高统计学习分类器的准确性和泛化特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号