首页> 外文期刊>Biomedical Engineering, IEEE Transactions on >A Cascaded Deep Convolutional Neural Network for Joint Segmentation and Genotype Prediction of Brainstem Gliomas
【24h】

A Cascaded Deep Convolutional Neural Network for Joint Segmentation and Genotype Prediction of Brainstem Gliomas

机译:级联深度卷积神经网络用于脑干胶质瘤的联合分割和基因型预测

获取原文
获取原文并翻译 | 示例

摘要

Goal:nAutomatic segmentation of brainstem gliomas and prediction of genotype (H3 K27M) mutation status based on magnetic resonance (MR) images are crucial but challenging tasks for computer-aided diagnosis in neurosurgery. In this paper, we present a novel cascaded deep convolutional neural network (CNN) to address these two challenging tasks simultaneously.nMethods:nOur novel segmentation task contains two feature-fusion modules: the Gaussian-pyramid multiscale input features-fusion technique and the brainstem-region feature enhancement. The aim is to resolve very difficult problems in brainstem glioma segmentation. Our prediction model combines CNN features and support-vector-machine classifier to automatically predict genotypes without region-of-interest labeled-MR images and is learned jointly with the segmentation task. First, Gaussian-pyramid multiscale input feature fusion is added to our glioma-segmentation task to solve the problems of size variety and weak brainstem-gliomas boundaries. Second, the two feature-fusion modules provide both local and global contexts to retain higher frequency details for sharper tumor boundaries, handling the problem of the large variation of tumor shape, and volume resolution.nResults and Conclusion:nExperiments demonstrate that our cascaded CNN method achieves not only a good tumor segmentation result with a high Dice similarity coefficient of 77.03%, but also a competitive genotype prediction result with an average accuracy of 94.85% upon fivefold cross-validation.
机译:目标: nAutomatic脑干神经胶质瘤的分割和基于磁共振(MR)图像的基因型(H3 K27M)突变状态预测对于神经外科的计算机辅助诊断至关重要但具有挑战性。在本文中,我们提出了一种新颖的级联深度卷积神经网络(CNN),以同时解决这两个挑战性任务。n方法: n我们新颖的分割任务包含两个特征融合模块:高斯金字塔多尺度输入特征融合技术和脑干区域功能增强。目的是解决脑干神经胶质瘤分割中非常困难的问题。我们的预测模型结合了CNN功能和支持向量机分类器,可以自动预测基因型,而无需标记感兴趣区域的MR图像,并且可以与分割任务一起学习。首先,将高斯金字塔多尺度输入特征融合添加到我们的神经胶质瘤分割任务中,以解决尺寸变化和脑干-神经胶质瘤边界薄弱的问题。其次,这两个功能融合模块提供了局部和全局上下文,以保留更高频率的细节以实现更清晰的肿瘤边界,从而解决了肿瘤形状和体积分辨率的巨大差异问题。n结果与结论: nExperiments证明我们的级联CNN方法无法实现不仅获得了良好的肿瘤分割结果,而且Dice相似系数高达77.03%,而且经过五重交叉验证,其竞争基因型预测结果的平均准确度为94.85%。

著录项

  • 来源
    《Biomedical Engineering, IEEE Transactions on》 |2018年第9期|1943-1952|共10页
  • 作者单位

    Department of Biomedical EngineeringSchool of Medicine Tsinghua University;

    Department of Biomedical EngineeringSchool of Medicine Tsinghua University;

    Department of Neurosurgery/China National Clinical Research Center for Neurological Diseases Beijing Tiantan HospitalCapital Medical University;

    Department of Biomedical EngineeringSchool of Medicine Tsinghua University;

    Department of Biomedical EngineeringSchool of Medicine Tsinghua University;

    Department of Neurosurgery/China National Clinical Research Center for Neurological Diseases Beijing Tiantan HospitalCapital Medical University;

    Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tumors; Image segmentation; Task analysis; Brainstem; Brain modeling; Biomedical imaging; Feature extraction;

    机译:肿瘤;图像分割;任务分析;脑干;脑建模;生物医学成像;特征提取;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号