首页> 外文期刊>Neurocomputing >Segmentation of glioma tumors in brain using deep convolutional neural network
【24h】

Segmentation of glioma tumors in brain using deep convolutional neural network

机译:基于深度卷积神经网络的脑胶质瘤肿瘤分割

获取原文
获取原文并翻译 | 示例

摘要

Detection of brain tumor using a segmentation based approach is critical in cases, where survival of a subject depends on an accurate and timely clinical diagnosis. Gliomas are the most commonly found tumors, which have irregular shape and ambiguous boundaries, making them one of the hardest tumors to detect. The automation of brain tumor segmentation remains a challenging problem mainly due to significant variations in its structure. An automated brain tumor segmentation algorithm using deep convolutional neural network (DCNN) is presented in this paper. A patch based approach along with an inception module is used for training the deep network by extracting two co-centric patches of different sizes from the input images. Recent developments in deep neural networks such as dropout, batch normalization, non-linear activation and inception module are used to build a new ILinear nexus architecture. The module overcomes the over-fitting problem arising due to scarcity of data using dropout regularizer. Images are normalized and bias field corrected in the pre-processing step and then extracted patches are passed through a DCNN, which assigns an output label to the central pixel of each patch. Morphological operators are used for post-processing to remove small false positives around the edges. A two-phase weighted training method is introduced and evaluated using BRATS 2013 and BRATS 2015 datasets, where it improves the performance parameters of state-of-the-art techniques under similar settings. (C) 2017 Elsevier B.V. All rights reserved.
机译:在受试者的存活取决于准确和及时的临床诊断的情况下,使用基于分割的方法检测脑肿瘤至关重要。神经胶质瘤是最常见的肿瘤,其形状不规则且边界不明确,使其成为最难检测的肿瘤之一。脑肿瘤分割的自动化仍然是一个具有挑战性的问题,这主要是由于其结构的显着变化。本文提出了一种基于深度卷积神经网络(DCNN)的自动脑肿瘤分割算法。基于补丁的方法与初始模块一起用于通过从输入图像中提取两个大小不同的同心补丁来训练深度网络。深度神经网络的最新发展,例如辍学,批处理规范化,非线性激活和启动模块,被用于构建新的ILinear链接体系结构。该模块克服了由于使用遗漏调节器而缺乏数据而导致的过拟合问题。在预处理步骤中对图像进行归一化和偏置场校正,然后将提取的色块通过DCNN,该DCNN将输出标签分配给每个色块的中心像素。形态运算符用于后期处理,以去除边缘周围的小的假阳性。引入了两阶段加权训练方法,并使用BRATS 2013和BRATS 2015数据集进行了评估,该方法改进了在类似设置下的最新技术的性能参数。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号