首页> 外文期刊>Biomedical Engineering, IEEE Transactions on >Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-Parametric MRI
【24h】

Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-Parametric MRI

机译:Bi-parametric MRI前列腺癌检测和分级的深度学习回归

获取原文
获取原文并翻译 | 示例

摘要

One of the most common types of cancer in men is prostate cancer (PCa). Biopsies guided by bi-parametric magnetic resonance imaging (MRI) can aid PCa diagnosis. Previous works have mostly focused on either detection or classification of PCa from MRI. In this work, however, we present a neural network that simultaneously detects and grades cancer tissue in an end-to-end fashion. This is more clinically relevant than the classification goal of the ProstateX-2 challenge. We used the dataset of this challenge for training and testing. We use a 2D U-Net with MRI slices as input and lesion segmentation maps that encode the Gleason Grade Group (GGG), a measure for cancer aggressiveness, as output. We propose a method for encoding the GGG in the model target that takes advantage of the fact that the classes are ordinal. Furthermore, we evaluate methods for incorporating prostate zone segmentations as prior information, and ensembling techniques. The model scored a voxel-wise weighted kappa of $0.446 pm 0.082$ and a Dice similarity coefficient for segmenting clinically significant cancer of $0.370 pm 0.046$ , obtained using 5-fold cross-validation. The lesion-wise weighted kappa on the ProstateX-2 challenge test set was $0.13 pm 0.27$ . We show that our proposed model target outperforms standard multiclass classification and multi-label ordinal regression. Additionally, we present a comparison of methods for further improvement of the model performance.
机译:男性中最常见的癌症之一是前列腺癌(PCA)。双参数磁共振成像(MRI)引导的活组织检查可以帮助PCA诊断。以前的作品主要集中在MRI的PCA的检测或分类上。然而,在这项工作中,我们提出了一种神经网络,其同时以端到端的方式检测和患癌组织。这比Prostatex-2挑战的分类目标更为相关。我们使用这一挑战的数据集进行培训和测试。我们使用带有MRI切片的2D U-Net作为编码Gleason级组(GGG)的输入和病变分割图,癌症侵略性的措施,作为产出。我们提出了一种用于在模型目标中编码GGG的方法,该方法利用类是序数的事实。此外,我们评估将前列腺区分割的方法作为先前的信息,以及合奏技术。该模型对<内联公式XMLNS的Voxel-Wise加权Kappa:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/ 1999 / XLINK“> $ 0.446 PM 0.082 $ 分割<内联公式XMLNS的临床显着癌症的骰子相似系数:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ 0.370 PM 0.046 $ ,使用5倍交叉验证获得。 Prostatex-2挑战测试集上的Lesion-Wise加权kappa是<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http:// www .w3.org / 1999 / xlink“> pm 0.27 $ 。我们表明我们所提出的模型目标优于标准的多字符分类和多标签序数回归。此外,我们提供了进一步改进模型性能的方法的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号