首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Objective Assessment of Beat Quality in Transcranial Doppler Measurement of Blood Flow Velocity in Cerebral Arteries
【24h】

Objective Assessment of Beat Quality in Transcranial Doppler Measurement of Blood Flow Velocity in Cerebral Arteries

机译:客观评估脑动脉血流速度血流量测量中的节拍质量

获取原文
获取原文并翻译 | 示例

摘要

Objective: Transcranial Doppler (TCD) ultrasonography measures pulsatile cerebral blood flow velocity in the arteries and veins of the head and neck. Similar to other real-time measurement modalities, especially in healthcare, the identification of high-quality signals is essential for clinical interpretation. Our goal is to identify poor quality beats and remove them prior to further analysis of the TCD signal. Methods: We selected objective features for this purpose including Euclidean distance between individual and average beat waveforms, cross-correlation between individual and average beat waveforms, ratio of the high-frequency power to the total beat power, beat length, and variance of the diastolic portion of the beat waveform. We developed an iterative outlier detection algorithm to identify and remove the beats that are different from others in a recording. Finally, we tested the algorithm on a dataset consisting of more than 15 h of TCD data recorded from 48 stroke and 34 in-hospital control subjects. Results: We assessed the performance of the algorithm in the improvement of estimation of clinically important TCD parameters by comparing them to that of manual beat annotation. The results show that there is a strong correlation between the two, that demonstrates the algorithm has successfully recovered the clinically important features. We obtained significant improvement in estimating the TCD parameters using the algorithm accepted beats compared to using all beats. Significance: Our algorithm provides a valuable tool to clinicians for automated detection of the reliable portion of the data. Moreover, it can be used as a pre-processing tool to improve the data quality for automated diagnosis of pathologic beat waveforms using machine learning.
机译:目的:经颅多普勒(TCD)超声检查测量头部和颈部动脉和静脉中的脉动脑血流速度。类似于其他实时测量模式,特别是在医疗保健中,识别高质量信号对于临床解释至关重要。我们的目标是在进一步分析TCD信号之前识别质量差的节拍并取出它们。方法:我们为此目的选择了客观特征,包括个人和平均节拍波形之间的欧几里德距离,个体和平均拍波之间的互相关,高频功率与总节拍功率的比率,节拍长度和舒张差异。节拍波形的一部分。我们开发了一种迭代的异常值检测算法,用于识别和删除与录制中其他不同的节拍。最后,我们在数据集上测试了由超过15小时的TCD数据组成的数据集,记录在48中风和34个内部控制主题中。结果:通过将它们与手动击败注释的比较,我们评估了算法的性能在提高临床重要的TCD参数的估算中。结果表明,两者之间存在强烈的相关性,这表明算法已成功恢复临床重要特征。与使用所有节拍相比,我们获得了估计TCD参数的显着改进。意义:我们的算法为临床医生提供了有价值的工具,用于自动检测数据的可靠部分。此外,它可以用作预处理工具,以提高使用机器学习的病理搏动波形的自动诊断数据质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号