首页> 外文期刊>IEEE Transactions on Biomedical Engineering >JointRCNN: A Region-Based Convolutional Neural Network for Optic Disc and Cup Segmentation
【24h】

JointRCNN: A Region-Based Convolutional Neural Network for Optic Disc and Cup Segmentation

机译:Thinnrcnn:用于光盘和杯分割的基于区域的卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Objective: The purpose of this paper is to propose a novel algorithm for joint optic disc and cup segmentation, which aids the glaucoma detection. Methods: By assuming the shapes of cup and disc regions to be elliptical, we proposed an end-to-end region-based convolutional neural network for joint optic disc and cup segmentation (referred to as JointRCNN). Atrous convolution is introduced to boost the performance of feature extraction module. In JointRCNN, disc proposal network (DPN) and cup proposal network (CPN) are proposed to generate bounding box proposals for the optic disc and cup, respectively. Given the prior knowledge that the optic cup is located in the optic disc, disc attention module is proposed to connect DPN and CPN, where a suitable bounding box of the optic disc is first selected and then continued to be propagated forward as the basis for optic cup detection in our proposed network. After obtaining the disc and cup regions, which are the inscribed ellipses of the corresponding detected bounding boxes, the vertical cup-to-disc ratio is computed and used as an indicator for glaucoma detection. Results: Comprehensive experiments clearly show that our JointRCNN model outperforms state-of-the-art methods for optic disc and cup segmentation task and glaucoma detection task. Conclusion: Joint optic disc and cup segmentation, which utilizes the connection between optic disc and cup, could improve the performance of optic disc and cup segmentation. Significance: The proposed method improves the accuracy of glaucoma detection. It is promising to be used for glaucoma screening.
机译:目的:本文的目的是提出一种新颖的关节光盘和杯分割算法,有助于青光眼检测。方法:通过假设杯子和盘区的形状为椭圆形,我们提出了一种基于端到端的基于区域的卷积神经网络,用于关节光盘和杯分割(称为Thernrcnn)。介绍了不含特色提取模块的性能。在jointrcnn中,建议分别为光盘和杯子生成边界框提案的光盘提案网络(DPN)和杯子提案网络(CPN)。鉴于光盘位于光盘中的先前知识,提出了光盘注意模块来连接DPN和CPN,其中首先选择光盘的合适边界盒,然后继续向前传播为光学器件我们提出的网络中的杯子检测。在获得作为相应检测到的边界盒的刻录椭圆的盘和杯区之后,计算垂直杯 - 盘比并用作青光眼检测的指示器。结果:综合实验清楚地表明,我们的编辑模型优于光盘和杯分割任务和青光眼检测任务的最先进方法。结论:在光盘和杯子之间采用连接的关节光盘和杯分割可以提高光盘和杯分割的性能。意义:该方法提高了青光眼检测的准确性。有希望用于青光眼筛选。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号