首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Sequential Factorized Autoencoder for Localizing the Origin of Ventricular Activation From 12-Lead Electrocardiograms
【24h】

Sequential Factorized Autoencoder for Localizing the Origin of Ventricular Activation From 12-Lead Electrocardiograms

机译:用于定位12-铅心电图的室内激活起源的顺序分解自身阳极

获取原文
获取原文并翻译 | 示例

摘要

Objective: This work presents a novel approach to handle the inter-subject variations existing in the population analysis of ECG, applied for localizing the origin of ventricular tachycardia (VT) from 12-lead electrocardiograms (ECGs). Methods: The presented method involves a factor disentangling sequential autoencoder (f-SAE) - realized in both long short-term memory (LSTM) and gated recurrent unit (GRU) networks - to learn to disentangle the inter-subject variations from the factor relating to the location of origin of VT. To perform such disentanglement, a pair-wise contrastive loss is introduced. Results: The presented methods are evaluated on ECG dataset with 1012 distinct pacing sites collected from scar-related VT patients during routine pace-mapping procedures. Experiments demonstrate that, for classifying the origin of VT into the predefined segments, the presented f-SAE improves the classification accuracy by 8.94% from using prescribed QRS features, by 1.5% from the supervised deep CNN network, and 5.15% from the standard SAE without factor disentanglement. Similarly, when predicting the coordinates of the VT origin, the presented f-SAE improves the performance by 2.25 mm from using prescribed QRS features, by 1.18 mm from the supervised deep CNN network and 1.6 mm from the standard SAE. Conclusion: These results demonstrate the importance as well as the feasibility of the presented f-SAE approach for separating inter-subject variations when using 12-lead ECG to localize the origin of VT. Significance: This work suggests the important research direction to deal with the well-known challenge posed by inter-subject variations during population analysis from ECG signals.
机译:目的:这项工作提出了一种新的方法来处理ECG人口分析中存在的对象间变化,适用于将心室性心动过速(VT)的起源从12铅心电图(ECG)定位。方法:呈现的方法涉及一种不戒指的顺序序列自动化器(F-SAE) - 在长短期内存(LSTM)和门控复发单元(GU)网络中实现 - 学习解除来自因子相关的对象间变化到vt的原点的位置。为了进行这种解剖学,引入了一对明智的对比损失。结果:在常规步伐手术过程中,通过从瘢痕相关的VT患者收集的1012个不同的起搏站来评估所呈现的方法。实验表明,对于将VT的起源分类为预定义段,所呈现的F-SAE通过使用规定的QRS特征来提高8.94%,从监督的深层CNN网络中的1.5%,以及标准SAE的5.15%没有因素解剖学。类似地,当预测VT来源的坐标时,所呈现的F-SAE通过使用规定的QRS特征将性能提高2.25mm,从监督的深CNN网络距1.18毫米,距标准SAE 1.6毫米。结论:这些结果证明了在使用12-Lead ECG以定位VT的起源时,所呈现的F-SAE方法的可行性以及呈现的F-SAE方法的可行性。意义:这项工作表明,从心电图信号分析群体分析期间处理众所周知的挑战的重要研究方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号