首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Reduced-Order Unscented Kalman Filter With Observations in the Frequency Domain: Application to Computational Hemodynamics
【24h】

Reduced-Order Unscented Kalman Filter With Observations in the Frequency Domain: Application to Computational Hemodynamics

机译:减少秩序的Unscented Kalman滤波器在频域中的观测:应用于计算血流动力学

获取原文
获取原文并翻译 | 示例

摘要

Objective: The aim of this paper is to assess the potential of the reduced-order unscented Kalman's filter (ROUKF) in the context of computational hemodynamics, in order to estimate cardiovascular model parameters when employing real patient-specific data. Methods: The approach combines an efficient blood flow solver for one-dimensional networks (for the forward problem) with the parameter estimation problem cast in the frequency space. Namely, the ROUKF is used to correct model parameters after each cardiac cycle, depending on the discrepancies of model outputs with respect to available observations properly mapped into the frequency space. Results: First we validate the filter in frequency domain applying it in the context of a set of experimental measurements for an in vitro model. Second, we perform different numerical experiments aiming at parameter estimation using patient-specific data. Conclusion: Our results demonstrate that the filter in frequency domain allows a faster and more robust parameter estimation, when compared to its time-domain counterpart. Moreover, the proposed approach allows to estimate parameters that are not directly related to the network, but are crucial for targeting inter-individual parameter variability (e.g., parameters that characterize the cardiac output). Significance: The ROUKF in frequency domain provides a robust and flexible tool for estimating parameters related to cardiovascular mathematical models using in vivo data.
机译:目的:本文的目的是在计算血流动力学的背景下评估下降秩序的卡尔曼过滤器(Roukf)的潜力,以便在采用真正的患者特定数据时估计心血管模型参数。方法:该方法将有效的血流求解器组合在频率空间中的参数估计问题的一维网络(对于前向问题)结​​合了一维网络(对于前向问题)。即,Roukf用于在每个心动周期之后纠正模型参数,具体取决于模型输出相对于可用观察的模型输出的差异,可以正确映射到频率空间。结果:首先,我们在体外模型的一组实验测量的上下文中验证应用频域中的滤波器。其次,我们使用特定于患者的数据执行针对参数估计的不同数值实验。结论:我们的结果表明,与其时域对应物相比,频域中的滤波器允许更快,更强大的参数估计。此外,所提出的方法允许估计与网络不直接相关的参数,但对于靶向单独的参数变异性至关重要(例如,表征心输出的参数)。意义:频域中的Roukf提供了一种稳健而灵活的工具,用于估计与体内数据中的心血管数学模型相关的参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号