首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Myoelectric Pattern Recognition for Controlling a Robotic Hand: A Feasibility Study in Stroke
【24h】

Myoelectric Pattern Recognition for Controlling a Robotic Hand: A Feasibility Study in Stroke

机译:控制机器人手的肌电模式识别:中风的可行性研究

获取原文
获取原文并翻译 | 示例

摘要

Objective: Myoelectric pattern recognition has been successfully applied as a human-machine interface to control robotic devices such as prostheses and exoskeletons, significantly improving the dexterity of myoelectric control. This study investigates the feasibility of applying myoelectric pattern recognition for controlling a robotic hand in stroke patients. Methods: Myoelectric pattern recognition of six hand motion patterns was performed using forearm electromyogram signals in paretic side of eight stroke subjects. Both the random cross validation (RCV) and the chronological handout validation (CHV) were applied to assess the offline myoelectric pattern recognition performance. Experiments on real-time myoelectric pattern recognition control of an exoskeleton robotic hand were also performed. Results: An average classification accuracy of 84.1% (the mean value from two different classifiers) and individual subject differences were observed in the offline myoelectric pattern recognition analysis using the RCV, while the accuracy decreased to 65.7% when the CHV was used. The stroke subjects achieved an average accuracy of 61.3 +/- 20.9% for controlling the robotic hand. However, our study did not reveal a clear correlation between the real-time control accuracy and the offline myoelectric pattern recognition performance, or any specific characteristics of the stroke subjects. Conclusion: The findings suggest that it is feasible to apply myoelectric pattern recognition to control the robotic hand in some but not all of the stroke patients. Each stroke subject should be individually online tested for the feasibility of applying myoelectric pattern recognition control for robot-assisted rehabilitation.
机译:目的:肌电模式识别已成功地用作人机界面来控制假肢和外骨骼等机器人设备,从而显着提高了肌电控制的灵活性。本研究调查了应用肌电模式识别来控制中风患者的机械手的可行性。方法:在八名卒中患者的前额侧,使用前臂肌电图信号对六个手部动作模式进行肌电模式识别。随机交叉验证(RCV)和按时间顺序讲义验证(CHV)均用于评估离线肌电模式识别性能。还进行了外骨骼机器人手的实时肌电模式识别控制的实验。结果:在使用RCV的离线肌电模式识别分析中,观察到的平均分类准确度为84.1%(两个不同分类器的平均值),并且个体差异较大,而使用CHV时,分类准确度降至65.7%。中风对象在控制机械手方面的平均准确度达到61.3 +/- 20.9%。但是,我们的研究并未揭示实时控制准确度与离线肌电模式识别性能或中风受试者的任何特定特征之间的明确关联。结论:研究结果表明,在某些而非全部卒中患者中,应用肌电模式识别来控制机械手是可行的。每个卒中受试者都应进行单独的在线测试,以了解将肌电模式识别控制应用于机器人辅助康复的可行性。

著录项

  • 来源
    《IEEE Transactions on Biomedical Engineering》 |2019年第2期|365-372|共8页
  • 作者单位

    Univ Texas Hlth Sci Ctr Houston, Dept Phys Med & Rehabil, Houston, TX 77030 USA|TIRR Mem Hermann Res Ctr, Houston, TX 77030 USA;

    Chinese Univ Hong Kong, Dept Biomed Engn, Hong Kong, Peoples R China;

    Univ Sci & Technol China, Biomed Engn Program, Hefei, Anhui, Peoples R China;

    Univ Texas Hlth Sci Ctr Houston, Dept Phys Med & Rehabil, Houston, TX 77030 USA|TIRR Mem Hermann Res Ctr, Houston, TX 77030 USA;

    Univ Texas Hlth Sci Ctr Houston, Dept Phys Med & Rehabil, Houston, TX 77030 USA|TIRR Mem Hermann Res Ctr, Houston, TX 77030 USA|Guangdong Work Injury Rehabil Ctr, Guangzhou 510440, Guangdong, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    EMG; myoelectric pattern recognition; real-time control; hand exoskeleton; stroke rehabilitation;

    机译:肌电图;肌电模式识别;实时控制;外骨骼;中风康复;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号