首页> 外文期刊>Biomedical Engineering, IEEE Transactions on >Shared and Subject-Specific Dictionary Learning (ShSSDL) Algorithm for Multisubject fMRI Data Analysis
【24h】

Shared and Subject-Specific Dictionary Learning (ShSSDL) Algorithm for Multisubject fMRI Data Analysis

机译:多主题功能磁共振成像数据分析的共享和特定主题词典学习(ShSSDL)算法

获取原文
获取原文并翻译 | 示例

摘要

Objective: Analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects is at the heart of many medical imaging studies, and approaches based on dictionary learning (DL) are recently noted as promising solutions to the problem. However, the DL-based methods for fMRI analysis proposed to date do not naturally extend to multisubject analysis. In this paper, we propose a DL algorithm for multisubject fMRI data analysis. Methods: The proposed algorithm [named shared and subject-specific dictionary learning (ShSSDL)] is derived based on a temporal concatenation, which is particularly attractive for the analysis of multisubject task-related fMRI datasets. It differs from existing DL algorithms in both its sparse coding and dictionary update stages and has the advantage of learning a dictionary shared by all subjects as well as a set of subject-specific dictionaries. Results: The performance of the proposed DL algorithm is illustrated using simulated and real fMRI datasets. The results show that it can successfully extract shared as well as subject-specific latent components. Conclusion: In addition to offering a new DL approach, when applied on multisubject fMRI data analysis, the proposed algorithm generates a group level as well as a set of subject-specific spatial maps. Significance: The proposed algorithm has the advantage of learning simultaneously multiple dictionaries providing us with a shared as well discriminative source of information about the analyzed fMRI datasets.
机译:目的:分析来自多个受试者的功能性磁共振成像(fMRI)数据是许多医学成像研究的核心,最近发现基于字典学习(DL)的方法是解决该问题的有前途的解决方案。但是,迄今为止提出的基于DL的fMRI分析方法并不自然地扩展到多对象分析。在本文中,我们提出了一种用于多主体功能磁共振成像数据分析的DL算法。方法:基于时间级联推导了所提出的算法[命名为共享和特定主题的字典学习(ShSSDL)],这对于与多学科任务相关的功能磁共振成像数据集的分析特别有吸引力。它在稀疏编码和字典更新阶段都与现有的DL算法不同,并且具有学习所有主题以及一组特定主题词典共享的字典的优势。结果:使用模拟和真实fMRI数据集说明了所提出的DL算法的性能。结果表明,它可以成功地提取共享的以及主题特定的潜在成分。结论:除了提供一种新的DL方法,将其应用于多对象fMRI数据分析时,该算法还可以生成一个组级别以及一组特定于对象的空间图。启示:所提算法的优点是可以同时学习多个词典,从而为我们提供了有关分析后的fMRI数据集的共享且具有判别力的信息源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号