首页> 外文期刊>Biomedical and Health Informatics, IEEE Journal of >Hemorrhage Prediction Models in Surgical Intensive Care: Bedside Monitoring Data Adds Information to Lab Values
【24h】

Hemorrhage Prediction Models in Surgical Intensive Care: Bedside Monitoring Data Adds Information to Lab Values

机译:外科重症监护中的出血预测模型:床旁监测数据可为实验室价值提供信息

获取原文
获取原文并翻译 | 示例

摘要

Hemorrhage is a frequent complication in surgery patients; its identification and management have received increasing attention as a target for quality improvement in patient care in the Intensive Care Unit (ICU). The purposes of this work were 1) to find an early detection model for hemorrhage by exploring the range of data mining methods that are currently available, and 2) to compare prediction models utilizing continuously measured physiological data from bedside monitors to those using commonly obtained laboratory tests. We studied 3766 patients admitted to the University of Virginia Health System Surgical Trauma Burn ICU. Hemorrhage was defined as three or more units of red blood cells transfused within 24 h without red blood cell transfusion in the preceding 24 h. 222 patients (5.9%) experienced a hemorrhage, and multivariate models based on vital signs and their trends showed good results (AUC = 76.1%). The hematocrit, not surprisingly, had excellent performance (AUC = 87.7%). Models that included both continuous monitoring and laboratory tests had the best performance (AUC = 92.2%). The results point to a combined strategy of continuous monitoring and intermittent lab tests as a reasonable clinical approach to the early detection of hemorrhage in the surgical ICU.
机译:出血是手术患者的常见并发症。作为重症监护室(ICU)改善患者护理质量的目标,其识别和管理越来越受到关注。这项工作的目的是:1)通过探索当前可用的数据挖掘方法的范围找到出血的早期检测模型,以及2)比较使用床边监护仪连续测量的生理数据的预测模型与使用通常获得的实验室数据的预测模型。测试。我们研究了3766名入选弗吉尼亚大学医疗系统手术创伤烧伤ICU的患者。出血的定义是在24小时内输血三个或更多单位的红细胞,而在之前的24小时内没有输血。 222位患者(5.9%)发生了出血,基于生命体征的多变量模型及其趋势显示出良好的效果(AUC = 76.1%)。毫不奇怪,血细胞比容具有出色的表现(AUC = 87.7%)。包含连续监测和实验室测试的模型均具有最佳性能(AUC = 92.2%)。结果表明,连续监测和间歇性实验室测试相结合的策略是一种合理的临床方法,可以早期发现外科ICU中的出血。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号