首页> 外文期刊>Biomedical and Health Informatics, IEEE Journal of >Changes in Daily Measures of Blood Pressure and Heart Rate Improve Weight-Based Detection of Heart Failure Deterioration in Patients on Telemonitoring
【24h】

Changes in Daily Measures of Blood Pressure and Heart Rate Improve Weight-Based Detection of Heart Failure Deterioration in Patients on Telemonitoring

机译:每日血压和心率测量值的变化改善了基于体重的远程监测患者心力衰竭恶化的检测

获取原文
获取原文并翻译 | 示例

摘要

Blood pressure (BP) and heart rate (HR) are often captured in conjunction with weight in telemonitoring systems, but the additional prognostic potential of daily measurements of BP and HR in providing information on up-coming hospitalizations for worsening heart failure (HFH) have not been explored thoroughly. We retrospectively analyzed 267 daily home-telemonitored heart failure (HF) subjects. We extracted those episodes of HFHs that had sufficient data entries in the days leading up to hospitalization and tested the prognostic potential of 48 trend features based on weight, systolic BP, diastolic BP, pulse pressure (PP), and HR with a Naive Bayesian model. The single best-performing trend feature-with a cross-validated estimate of 0.64 for the area under the curve (AUC) with a standard deviation (SD) of 0.01-is based on a 2-day weight trend. The best multivariate feature set (cross-validated AUC = 0.70, SD = 0.01) comprises of 2-day trend features based on weight, systolic BP, and HR. There were large variations in the weight trends preceding hospitalizations and weight change alone had a modest predictive ability. Readily interpretable features capturing trends in BP and HR provided additional prognostic information and can be used for improving classification.
机译:血压(BP)和心率(HR)通常与远程监视系统中的体重结合使用,但是每天测量BP和HR的额外预后潜力可提供有关即将到来的因加重心力衰竭(HFH)住院治疗的信息没有被彻底探索。我们回顾性分析了267例日常家庭监护的心力衰竭(HF)受试者。我们提取了住院前几天具有足够数据输入的HFH发作,并通过朴素贝叶斯模型基于体重,收缩压,舒张压,脉压(PP)和HR测试了48种趋势特征的预后潜力。单一的最佳趋势特征-曲线下面积(AUC)的交叉验证估计值为0.64,标准偏差(SD)为0.01-是基于2天的权重趋势。最佳的多元特征集(交叉验证的AUC = 0.70,SD = 0.01)由基于体重,收缩压和HR的2天趋势特征组成。住院前体重趋势存在很大差异,仅体重变化就具有中等预测能力。易于解释的特征捕捉了BP和HR的趋势,提供了附加的预后信息,可用于改善分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号