首页> 外文期刊>Bioinformatics >Inference of missing SNPs and information quantity measurements for haplotype blocks
【24h】

Inference of missing SNPs and information quantity measurements for haplotype blocks

机译:单倍型模块的缺失SNP推断和信息量测量

获取原文
获取原文并翻译 | 示例

摘要

Motivation: Missing data in genotyping single nucleotide polymorphism (SNP) spots are common. High-throughput genotyping methods usually have a high rate of missing data. For example, the published human chromosome 21 data by Patil et al. contains about 20% missing SNPs. Inferring missing SNPs using the haplotype block structure is promising but difficult because the haplotype block boundaries are not well defined. Here we propose a global algorithm to overcome this difficulty.Results: First, we propose to use entropy as a measure of haplotype diversity. We show that the entropy measure combined with a dynamic programming algorithm produces better haplotype block partitions than other measures. Second, based on the entropy measure, we propose a two-step iterative partition-inference algorithm for the inference of missing SNPs. At the first step, we apply the dynamic programming algorithm to partition haplotypes into blocks. At the second step, we use an iterative process similar to the expectation-maximization algorithm to infer missing SNPs in each haplotype block so as to minimize the block entropy. The algorithm iterates these two steps until the total block entropy is minimized. We test our algorithm in several experimental data sets. The results show that the global approach significantly improves the accuracy of the inference.
机译:动机:基因型单核苷酸多态性(SNP)点基因分型的数据丢失是常见的。高通量基因分型方法通常会丢失数据。例如,Patil等人发表的人类21号染色体数据。包含约20%的缺失SNP。使用单倍型块结构推断缺失的SNP是有希望的,但因为单倍型块的边界没有很好地定义,所以很难。在这里,我们提出了一种克服这一困难的全局算法。结果:首先,我们提出使用熵作为单倍型多样性的度量。我们表明,与动态规划算法相结合的熵测度比其他测度产生更好的单元型块分区。其次,基于熵测度,我们提出了一种两步迭代的分区推理算法来推断丢失的SNP。第一步,我们应用动态编程算法将单倍型划分为多个块。第二步,我们使用类似于期望最大化算法的迭代过程来推断每个单倍型模块中缺失的SNP,从而使模块熵最小。该算法迭代这两个步骤,直到总块熵最小。我们在几个实验数据集中测试了我们的算法。结果表明,全局方法大大提高了推理的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号