首页> 外文期刊>Big Data, IEEE Transactions on >Deep Feature Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network
【24h】

Deep Feature Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network

机译:卷积自动化器神经网络医学图像分析深度特征学习

获取原文
获取原文并翻译 | 示例

摘要

At present, computed tomography (CT) is widely used to assist disease diagnosis. Especially, computer aided diagnosis (CAD) based on artificial intelligence (AI) recently exhibits its importance in intelligent healthcare. However, it is a great challenge to establish an adequate labeled dataset for CT analysis assistance, due to the privacy and security issues. Therefore, this paper proposes a convolutional autoencoder deep learning framework to support unsupervised image features learning for lung nodule through unlabeled data, which only needs a small amount of labeled data for efficient feature learning. Through comprehensive experiments, it shows that the proposed scheme is superior to other approaches, which effectively solves the intrinsic labor-intensive problem during artificial image labeling. Moreover, it verifies that the proposed convolutional autoencoder approach can be extended for similarity measurement of lung nodules images. Especially, the features extracted through unsupervised learning are also applicable in other related scenarios.
机译:目前,计算机断层扫描(CT)广泛用于辅助疾病的诊断。尤其是,基于人工智能的计算机辅助诊断(CAD)(AI)最近表现出其在智能医疗保健的重要性。但是,它是建立一个适当的标记数据集CT分析援助,由于隐私和安全问题的巨大挑战。因此,本文提出了一种自动编码器卷积深度学习框架,以支持无监督图像特征学习通过未标记的数据肺结节,其只需要标记的数据量小的高效地物学习。通过全面的实验,它表明该方案优于其他方法,人工图像标记在此期间,有效地解决了固有的劳动密集型问题。此外,它验证所提出的自动编码器卷积方法可以扩展为肺结节图像的相似性测量。特别是,通过监督学习提取的特征也适用于其他相关的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号