首页> 外文期刊>Big Data, IEEE Transactions on >Research on Escaping the Big-Data Traps in O2O Service Recommendation Strategy
【24h】

Research on Escaping the Big-Data Traps in O2O Service Recommendation Strategy

机译:逃离O2O服务推荐战略中大数据陷阱的研究

获取原文
获取原文并翻译 | 示例

摘要

Internet business can be divided into two categories: pure online business and Online to Offline (O2O) business. Currently, the recommendation technology for online business is maturing, such as news, movies, products, and so forth. However, traditional recommendation technology can easily cause the overcrowding at some O2O services because of the big data traps. In the end, the users' experience with the O2O service recommendation is useless or very poor because they have to wait for a long time and can't enjoy the service immediately. Hence, how to improve the performance of O2O service recommendation has become a vital problem. To solve the problem, this paper proposes a research framework based on the continuous feedback learning mechanism between cyber layer and social layer. Then, the continuous feedback ideas are implemented in the design of the O2O service recommendation strategy step by step. Furthermore, the computational experiment system is constructed to perform performance analysis of these service strategies. The results show that our research framework is conductive to help O2O service recommendation to escape the big-data traps and to improve user experience.
机译:互联网业务可分为两类:纯在线业务和在线到离线(O2O)业务。目前,在线业务推荐技术正在成熟,如新闻,电影,产品等。然而,由于大数据陷阱,传统推荐技术很容易导致某些O2O服务过度拥挤。最终,用户对O2O服务推荐的经验是无用的或非常贫穷,因为他们必须等待很长时间,无法立即享受服务。因此,如何提高O2O服务建议的表现已成为一个重要的问题。为了解决问题,本文提出了一种基于网络层和社会层之间的连续反馈学习机制的研究框架。然后,在O2O服务推荐策略的设计中实现了连续反馈思路。此外,构建计算实验系统以执行这些服务策略的性能分析。结果表明,我们的研究框架是有助于帮助O2O服务建议逃脱大数据陷阱并提高用户体验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号