首页> 外文期刊>Big Data, IEEE Transactions on >Optimizing Taxi Driver Profit Efficiency: A Spatial Network-Based Markov Decision Process Approach
【24h】

Optimizing Taxi Driver Profit Efficiency: A Spatial Network-Based Markov Decision Process Approach

机译:优化出租车司机的利润效率:基于空间网络的马尔可夫决策过程方法

获取原文
获取原文并翻译 | 示例

摘要

Taxi services play an important role in the public transportation system of large cities. Improving taxi business efficiency is an important societal problem. Most of the recent analytical approaches on this topic only considered how to maximize the pickup chance, energy efficiency, or profit for the immediate next trip when recommending seeking routes, therefore may not be optimal for the overall profit over an extended period of time due to ignoring the destination choice of potential passengers. To tackle this issue, we propose a novel Spatial Network-based Markov Decision Process (SN-MDP) with a rolling horizon configuration to recommend better driving directions. Given a set of historical taxi records and the current status (e.g., road segment and time) of a vacant taxi, we find the best move for this taxi to maximize the profit in the near future. We propose statistical models to estimate the necessary time-variant parameters of SN-MDP from data to avoid competition between drivers. In addition, we take into account fuel cost to assess profit, rather than only income. A case study and several experimental evaluations on a real taxi dataset from a major city in China show that our proposed approach improves the profit efficiency by up to 13.7 percent and outperforms baseline methods in all the time slots.
机译:出租车服务在大城市公共交通系统中发挥着重要作用。提高出租车业务效率是一个重要的社会问题。最近关于该主题的最近分析方法仅考虑如何在推荐路线推荐时最大限度地提高拾取机会,能源效率或利润,因此可能在延长的时间内为整体利润最佳忽略潜在乘客的目的地选择。为了解决这个问题,我们提出了一种新的基于空间网络的马尔可夫决策过程(SN-MDP),具有滚动地平线配置,以推荐更好的行驶方向。鉴于一系列历史的出租车记录和空置出租车的当前状态(例如,道路段和时间),我们为此出租车找到了最佳举措,以最大限度地利用在不久的将来。我们提出统计模型来估计SN-MDP的必要时间变量参数,以避免驾驶员之间的竞争。此外,我们考虑到燃料成本来评估利润,而不是仅收入。来自中国主要城市的真正出租车数据集的案例研究和几个实验评估表明,我们的建议方法将盈利效率提高了高达13.7%,并在所有时隙中优于基线方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号