首页> 外文期刊>Behavior Research Methods >Four applications of permutation methods to testing a single-mediator model
【24h】

Four applications of permutation methods to testing a single-mediator model

机译:置换方法在测试单介体模型中的四种应用

获取原文
获取原文并翻译 | 示例

摘要

Four applications of permutation tests to the single-mediator model are described and evaluated in this study. Permutation tests work by rearranging data in many possible ways in order to estimate the sampling distribution for the test statistic. The four applications to mediation evaluated here are the permutation test of ab, the permutation joint significance test, and the noniterative and iterative permutation confidence intervals for ab. A Monte Carlo simulation study was used to compare these four tests with the four best available tests for mediation found in previous research: the joint significance test, the distribution of the product test, and the percentile and bias-corrected bootstrap tests. We compared the different methods on Type I error, power, and confidence interval coverage. The noniterative permutation confidence interval for ab was the best performer among the new methods. It successfully controlled Type I error, had power nearly as good as the most powerful existing methods, and had better coverage than any existing method. The iterative permutation confidence interval for ab had lower power than do some existing methods, but it performed better than any other method in terms of coverage. The permutation confidence interval methods are recommended when estimating a confidence interval is a primary concern. SPSS and SAS macros that estimate these confidence intervals are provided.
机译:这项研究描述并评估了置换测试对单介体模型的四种应用。排列测试通过以许多可能的方式重新排列数据来工作,以便估计测试统计量的采样分布。这里评估的四个调解应用是ab的置换检验,置换联合显着性检验以及ab的非迭代和迭代置换置信区间。使用蒙特卡罗模拟研究将这四个测试与先前研究中找到的四个最佳中介测试进行比较:联合显着性测试,产品测试的分布以及百分位数和偏差校正的自举测试。我们比较了I型错误,功效和置信区间覆盖率的不同方法。在新方法中,ab的非迭代置换置信区间是最佳的。它成功地控制了Type I错误,其功能几乎与最强大的现有方法一样好,并且覆盖范围比任何现有方法都更好。 ab的迭代置换置信区间的权能比某些现有方法低,但在覆盖率方面比任何其他方法都要好。当估计置信区间是主要问题时,建议使用置换置信区间方法。提供了估计这些置信区间的SPSS和SAS宏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号