首页> 外文期刊>Autonomous Robots >Learning gas distribution models using sparse Gaussian process mixtures
【24h】

Learning gas distribution models using sparse Gaussian process mixtures

机译:使用稀疏高斯混合气学习气体分布模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the problem of learning two-dimensional spatial models of gas distributions. To build models of gas distributions that can be used to accurately predict the gas concentration at query locations is a challenging task due to the chaotic nature of gas dispersal. We formulate this task as a regression problem. To deal with the specific properties of gas distributions, we propose a sparse Gaussian process mixture model, which allows us to accurately represent the smooth background signal and the areas with patches of high concentrations. We furthermore integrate the sparsification of the training data into an EM procedure that we apply for learning the mixture components and the gating function. Our approach has been implemented and tested using datasets recorded with a real mobile robot equipped with an electronic nose. The experiments demonstrate that our technique is well-suited for predicting gas concentrations at new query locations and that it outperforms alternative and previously proposed methods in robotics.
机译:在本文中,我们考虑了学习二维气体分布空间模型的问题。由于气体扩散的混乱性质,建立可用于准确预测查询位置处的气体浓度的气体分布模型是一项艰巨的任务。我们将此任务表述为回归问题。为了处理气体分布的特定属性,我们提出了一个稀疏的高斯混合过程模型,该模型可以使我们准确地表示平滑的背景信号和高浓度斑块区域。此外,我们还将训练数据的稀疏化集成到EM程序中,该程序可用于学习混合物成分和门控功能。我们的方法已通过使用配有电子鼻的真实移动机器人记录的数据集实施和测试。实验表明,我们的技术非常适合预测新查询位置的气体浓度,并且其性能优于机器人技术中的替代方法和先前提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号