首页> 外文期刊>Autonomous Robots >Mobility characterization for autonomous mobile robots using machine learning
【24h】

Mobility characterization for autonomous mobile robots using machine learning

机译:使用机器学习的自主移动机器人的移动性表征

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a supervised learning approach to improving the autonomous mobility of wheeled robots through sensing the robot’s interaction with terrain ‘underfoot.’ Mobility characterization is cast as a hierarchical task, in which pre-immobilization detection is achieved using support vector machines in time to prevent full immobilization, and if a pre-immobilization condition is detected, the associated terrain feature affecting mobility is identified using a Hidden Markov model. These methods are implemented using a hierarchical, layered control scheme developed for the Yeti robot, a 73-kg, four-wheeled robot designed to perform autonomous medium-range missions in polar terrain. The methodology is motivated by the difficultly of visually recognizing terrain features that impact mobility in low contrast terrain. The efficacy of the approach is evaluated using data from a suite of proprioceptive sensors. Real-time implementation shows that Yeti can consistently detect pre-immobilization conditions, stop in time to avoid unrecoverable immobilization, identify the terrain feature presenting the mobility challenge, and execute an escape sequence to retreat from the condition.
机译:本文提出了一种有监督的学习方法,通过感知机器人与地形“脚下”的交互作用来提高轮式机器人的自主移动性。移动性表征被作为一种分层任务,其中通过使用支持向量机及时实现固定前检测。防止完全固定,并且如果检测到预先固定条件,则使用隐马尔可夫模型识别影响移动性的相关地形特征。这些方法是使用为Yeti机器人开发的分层,分层控制方案来实现的。Yeti机器人是一款73公斤的四轮机器人,旨在在极地地区执行自主的中程任务。该方法的灵感来自于难以视觉识别低对比度地形中影响机动性的地形特征。使用一组本体感受传感器的数据评估该方法的有效性。实时实施表明,Yeti能够始终如一地检测出固定前的情况,及时停止以避免无法恢复的固定,识别出呈现出机动性挑战的地形特征,并执行逃生程序以撤离该条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号