首页> 外文期刊>Autonomous Robots >A vision based ensemble approach to velocity estimation for miniature rotorcraft
【24h】

A vision based ensemble approach to velocity estimation for miniature rotorcraft

机译:小型旋翼飞机基于视觉的整体速度估计方法

获取原文
获取原文并翻译 | 示例

摘要

Successful operation of a miniature rotorcraft relies on capabilities including automated guidance, trajectory following, and teleoperation; all of which require accurate estimates of the vehicle’s body velocities and Euler angles. For larger rotorcraft that operate outdoors, the traditional approach is to combine a highly accurate IMU with GPS measurements. However, for small scale rotorcraft that operate indoors, lower quality MEMS IMUs are used because of limited payload. In indoor applications GPS is usually not available, and state estimates based on IMU measurements drift over time. In this paper, we propose a novel framework for state estimation that combines a dynamic flight model, IMU measurements, and 3D velocity estimates computed from an onboard monocular camera using computer vision. Our work differs from existing approaches in that, rather than using a single vision algorithm to update the vehicle’s state, we capitalize on the strengths of multiple vision algorithms by integrating them into a meta-algorithm for 3D motion estimation. Experiments are conducted on two real helicopter platforms in a laboratory environment for different motion types to demonstrate and evaluate the effectiveness of our approach.
机译:微型旋翼机的成功运行取决于能力,包括自动导航,轨迹跟踪和遥控操作。所有这些都需要准确估计车辆的车身速度和欧拉角。对于在户外运行的大型旋翼机,传统方法是将高精度IMU与GPS测量结合起来。但是,对于在室内运行的小型旋翼飞机,由于有效载荷有限,因此使用了质量较低的MEMS IMU。在室内应用中,GPS通常不可用,并且基于IMU测量的状态估计会随时间漂移。在本文中,我们提出了一种新的状态估计框架,该框架结合了动态飞行模型,IMU测量值和使用计算机视觉从机载单眼相机计算出的3D速度估计值。我们的工作与现有方法的不同之处在于,我们没有使用单一视觉算法来更新车辆的状态,而是通过将多种视觉算法集成到用于3D运动估计的元算法中来利用多种视觉算法的优势。在实验室环境中的两个实际直升机平台上针对不同的运动类型进行了实验,以演示和评估我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号