首页> 外文期刊>Autonomous Mental Development, IEEE Transactions on >Structural Bootstrapping—A Novel, Generative Mechanism for Faster and More Efficient Acquisition of Action-Knowledge
【24h】

Structural Bootstrapping—A Novel, Generative Mechanism for Faster and More Efficient Acquisition of Action-Knowledge

机译:结构自举-一种新颖,生成机制,可更快,更高效地获取动作知识

获取原文
获取原文并翻译 | 示例

摘要

Humans, but also robots, learn to improve their behavior. Without existing knowledge, learning either needs to be explorative and, thus, slow or–to be more efficient–it needs to rely on supervision, which may not always be available. However, once some knowledge base exists an agent can make use of it to improve learning efficiency and speed. This happens for our children at the age of around three when they very quickly begin to assimilate new information by making guided guesses how this fits to their prior knowledge. This is a very efficient generative learning mechanism in the sense that the existing knowledge is generalized into as-yet unexplored, novel domains. So far generative learning has not been employed for robots and robot learning remains to be a slow and tedious process. The goal of the current study is to devise for the first time a general framework for a generative process that will improve learning and which can be applied at all different levels of the robot’s cognitive architecture. To this end, we introduce the concept of structural bootstrapping–borrowed and modified from child language acquisition–to define a probabilistic process that uses existing knowledge together with new observations to supplement our robot’s data-base with missing information about planning-, object-, as well as, action-relevant entities. In a kitchen scenario, we use the example of making batter by pouring and mixing two components and show that the agent can efficiently acquire new knowledge about planning operators, objects as well as required motor pattern for stirring by structural bootstrapping. Some benchmarks are shown, too, that demonstrate how structural bootstrapping improves performance.
机译:人类以及机器人都学会改善其行为。在没有现有知识的情况下,学习要么需要探索性的学习,要么就需要缓慢,或者要提高效率,就需要依靠监督,而监督可能并不总是可用的。但是,一旦存在某种知识库,代理就可以利用它来提高学习效率和速度。这种情况发生在我们三岁左右的孩子身上时,他们很快就开始进行引导性猜测,以吸收新的信息以适应他们的先验知识。从现有知识被概括为尚未探索的新颖领域的意义上来说,这是一种非常有效的生成学习机制。到目前为止,尚未将生成性学习用于机器人,并且机器人学习仍然是一个缓慢而乏味的过程。当前研究的目标是首次为生成过程设计一个通用框架,该框架将改善学习并可以应用于机器人认知体系的所有不同级别。为此,我们介绍了结构引导的概念-从儿童语言习得中借鉴和修改而来-定义了一个概率过程,该过程利用现有知识以及新的观察结果来补充机器人数据库中缺少有关计划,对象,以及与行动相关的实体。在厨房场景中,我们以浇注和混合两个成分来制作面糊的示例为例,并表明该代理可以通过结构自举有效地获得有关规划操作员,对象以及搅拌所需的电动机模式的新知识。还显示了一些基准,这些基准演示了结构自举如何提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号