首页> 外文期刊>Autonomous agents and multi-agent systems >Real-time multi-agent systems: rationality, formal model, and empirical results
【24h】

Real-time multi-agent systems: rationality, formal model, and empirical results

机译:实时多代理系统:合理性,正式模型和经验结果

获取原文
获取原文并翻译 | 示例

摘要

Since its dawn as a discipline, Artificial Intelligence (AI) has focused on mimicking the human mental processes. As AI applications matured, the interest for employing them into real-world complex systems (i.e., coupling AI with Cyber-Physical Systems-CPS) kept increasing. In the last decades, the multi-agent systems (MAS) paradigm has been among the most relevant approaches fostering the development of intelligent systems. In numerous scenarios, MAS boosted distributed autonomous reasoning and behaviors. However, many real-world applications (e.g., CPS) demand the respect of strict timing constraints. Unfortunately, current AI/MAS theories and applications only reason "about time" and are incapable of acting "in time" guaranteeing any timing predictability. This paper analyzes the MAS compliance with strict timing constraints (real-time compliance)-crucial for safety-critical applications such as healthcare, industry 4.0, and automotive. Moreover, it elicits the main reasons for the lack of real-time satisfiability in MAS (originated from current theories, standards, and implementations). In particular, traditional internal agent schedulers (general-purpose-like), communication middlewares, and negotiation protocols have been identified as co-factors inhibiting real-time compliance. To pave the road towards reliable and predictable MAS, this paper postulates a formal definition and mathematical model of real-time multi-agent systems (RT-MAS). Furthermore, this paper presents the results obtained by testing the dynamics characterizing the RT-MAS model within the simulator MAXIM-GPRT. Thus, it has been possible to analyze the deadline miss ratio between the algorithms employed in the most popular frameworks and the proposed ones. Finally, discussing the obtained results, the ongoing and future steps are outlined.
机译:自黎明作为一门纪律,人工智能(AI)专注于模仿人类心理过程。随着AI应用程序成熟的,将它们进入真实世界复杂系统的兴趣(即,通过网络 - 物理系统-CPS耦合AI)不断增加。在过去的几十年中,多代理系统(MAS)范式一直是促进智能系统发展的最相关的方法之一。在许多情况下,MAS提升了分布式自主推理和行为。然而,许多现实世界的应用(例如,CPS)要求尊重严格的时序约束。不幸的是,当前的AI / MAS理论和应用程序只有原因是“关于时间”并且无法行动“及时”,保证任何时间可预测性。本文分析了MAS符合严格的时序约束(实时遵守) - 保健,行业4.0和汽车等安全关键型应用。此外,它引发了MAS中缺乏实时满足性的主要原因(起源于当前的理论,标准和实施)。特别地,传统的内部代理调度员(普通目的),通信横向和谈判协议已被识别为抑制实时遵守的共同因素。要铺设走向可靠和可预测的MAS,本文假设实时多代理系统(RT-MAS)的正式定义和数学模型。此外,本文介绍了通过测试表征模拟器Maxim-GPRT内的RT-MAS模型的动态获得的结果。因此,已经可以分析最受欢迎的框架和所提出的算法之间的算法之间的截止日期比率。最后,讨论了所获得的结果,概述了正在进行的和未来的步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号