首页> 外文期刊>Autonomous agents and multi-agent systems >Wasp-like Agents for Distributed Factory Coordination
【24h】

Wasp-like Agents for Distributed Factory Coordination

机译:像黄蜂一样的分布式工厂协调代理

获取原文
获取原文并翻译 | 示例

摘要

Agent-based approaches to manufacturing scheduling and control have gained increasing attention in recent years. Such approaches are attractive because they offer increased robustness against the unpredictability of factory operations. But the specification of local coordination policies that give rise to efficient global performance and effectively adapt to changing circumstances remains an interesting challenge. In this paper, we present a new approach to this coordination problem, drawing on various aspects of a computational model of how wasp colonies coordinate individual activities and allocate tasks to meet the collective needs of the nest. We focus specifically on the problem of configuring parallel multi-purpose machines in a factory to best satisfy product demands over time. Wasp-like computational agents that we call routing wasps act as overall machine proxies. These agents use a model of wasp task allocation behavior, coupled with a model of wasp dominance hierarchy formation, to determine which new jobs should be accepted into the machine's queue. If you view our system from a market-oriented perspective, the policies that the routing wasps independently adapt for their respective machines can be likened to policies for deciding when to bid and when not to bid for arriving jobs. We benchmark the performance of our system on the real-world problem of assigning trucks to paint booths in a simulated vehicle paintshop. The objective of this problem is to minimize the number of paint color changes accrued by the system, assuming no a priori knowledge of the color sequence or color distribution of trucks arriving in the system. We demonstrate that our system outperforms the bidding mechanism originally implemented for the problem as well as another related adaptive bidding mechanism.
机译:近年来,基于代理的制造计划和控制方法越来越受到关注。此类方法之所以具有吸引力,是因为它们针对工厂运营的不可预测性提高了鲁棒性。但是,制定能够提高全球绩效并有效适应不断变化的形势的地方协调政策仍然是一个有趣的挑战。在本文中,我们利用黄蜂菌落如何协调个体活动并分配任务以满足巢穴的集体需求的计算模型的各个方面,提出了一种解决此协调问题的新方法。我们特别关注工厂中配置并行多用途机器以最好地满足产品需求的问题。我们称为路由黄蜂的类似Wasp的计算代理程序充当整体机器代理。这些代理使用黄蜂任务分配行为模型和黄蜂优势层次形成模型,以确定哪些新作业应被接受到机器的队列中。如果您从面向市场的角度来看我们的系统,则路由黄蜂独立于其各自机器的策略可以比作决定何时竞标和何时不竞标的策略。我们在模拟卡车涂装车间中将卡车分配给涂装棚的实际问题上,对系统的性能进行了基准测试。该问题的目的是在没有先验知识到达系统的卡车的颜色顺序或颜色分布的前提下,使系统所产生的油漆颜色变化的次数最小化。我们证明了我们的系统优于最初针对该问题实施的出价机制以及其他相关的自适应出价机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号