首页> 外文期刊>Autonomous agents and multi-agent systems >The complexity of multi-agent plan recognition
【24h】

The complexity of multi-agent plan recognition

机译:多主体计划识别的复杂性

获取原文
获取原文并翻译 | 示例

摘要

Multi-agent plan recognition (MAPR) seeks to identify the dynamic team structures and team plans from observations of the action sequences of a set of intelligent agents, based on a library of known team plans (plan library), and an evaluation function. It has important applications in decision support, team work, analyzing data from automated monitoring, surveillance, and intelligence analysis in general. We introduce a general model for MAPR that accommodates different representations of the plan library, and includes single agent plan recognition as a special case. Thus it provides an ideal substrate to investigate and contrast the complexities of single and multi-agent plan recognition. Using this model we generate theoretical insights on hardness, with practical implications. A key feature of these results is that they are baseline, i.e., the polynomial solvability results are given in terms of a compact and expressive plan language (context free language), while the hardness results are given in terms of a less compact language. Consequently the hardness results continue to hold in virtually all realistic plan languages, while the polynomial solvability results extend to the subsets of the context free plan language. In particular, we show that MAPR is in P (polynomial in the size of the plan library and the observation trace) if the number of agents is fixed (in particular 1) but NP-complete otherwise. If the number of agents is a variable, then even the one step MAPR problem is NP-complete. While these results pertain to abduction, we also investigate a related question: adaptation, i.e., the problem of refining the evaluation function based on feedback. We show that adaptation is also NP-hard for a variable number of agents, but easy for a single agent. These results establish a clear distinction between the hardnesses of single and multi-agent plan recognition even in idealized settings, indicating the necessity of a fundamentally different set of techniques for the latter.
机译:多代理计划识别(MAPR)旨在基于已知团队计划的库(计划库)和评估功能,通过观察一组智能代理的动作序列来识别动态的团队结构和团队计划。一般而言,它在决策支持,团队合作,分析来自自动监视,监视和情报分析的数据中具有重要的应用程序。我们介绍了MAPR的通用模型,该模型可容纳计划库的不同表示形式,并作为特殊情况包括单代理计划识别。因此,它为研究和对比单代理和多代理计划识别的复杂性提供了理想的基础。使用该模型,我们可以得出有关硬度的理论见解,并具有实际意义。这些结果的关键特征是它们是基线,即多项式可解性结果是用紧凑而富于表现力的计划语言(无上下文语言)给出的,而硬度结果是用不太紧凑的语言给出的。因此,硬度结果实际上在所有现实的计划语言中都保持不变,而多项式可解性结果扩展到上下文无关计划语言的子集。特别是,如果代理人的数量是固定的(特别是1个),则MAPR处于P(计划库大小和观察轨迹的多项式),否则为NP完全。如果代理的数量是变量,那么即使一个步骤的MAPR问题也是NP完全的。虽然这些结果与绑架有关,但我们还研究了一个相关的问题:适应性,即基于反馈改进评估功能的问题。我们表明,对于多种数量的代理,适应也是NP难的,但是对于单个代理,适应很容易。这些结果甚至在理想设置下也能在单代理和多代理计划识别的硬度之间建立明显的区分,这表明对于后者,必须有一套根本不同的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号