首页> 外文期刊>IEEE transactions on automation science and engineering >Data-Driven Modeling, Fault Diagnosis and Optimal Sensor Selection for HVAC Chillers
【24h】

Data-Driven Modeling, Fault Diagnosis and Optimal Sensor Selection for HVAC Chillers

机译:HVAC冷水机组的数据驱动建模,故障诊断和最佳传感器选择

获取原文
获取原文并翻译 | 示例

摘要

Chillers constitute a significant portion of energy consumption equipment in heating, ventilating and air-conditioning (HVAC) systems. The growing complexity of building systems has become a major challenge for field technicians to troubleshoot the problems manually; this calls for automated “smart-service systems” for performing fault detection and diagnosis (FDD). The focus of this paper is to develop a generic FDD scheme for centrifugal chillers and also to develop a nominal data-driven (“black-box”) model of the chiller that can predict the system response under new loading conditions. In this vein, support vector machines, principal component analysis, and partial least squares are the candidate fault classification techniques in our approach. We present a genetic algorithm-based approach to select a sensor suite for maximum diagnosabilty and also evaluated the performance of selected classification procedures with the optimized sensor suite. The responses of these selected sensors are predicted under new loading conditions using the nominal model developed via the black-box modeling approach. We used the benchmark data on a 90-t real centrifugal chiller test equipment, provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, to demonstrate and validate our proposed diagnostic procedure. The database consists of data from sixty four monitored variables of the chiller under 27 different modes of operation during nominal and eight faulty conditions with different severities.
机译:冷水机是供暖,通风和空调(HVAC)系统中能耗设备的重要组成部分。建筑系统日益复杂,已成为现场技术人员手动解决问题的主要挑战。这要求执行故障检测和诊断(FDD)的自动化“智能服务系统”。本文的重点是为离心式冷水机开发通用的FDD方案,并开发冷水机的标称数据驱动(“黑匣子”)模型,该模型可以预测新负载条件下的系统响应。在这种情况下,支持向量机,主成分分析和偏最小二乘是我们方法中的候选故障分类技术。我们提出了一种基于遗传算法的方法来选择传感器套件,以实现最大的可诊断性,并通过优化的传感器套件评估了所选分类程序的性能。这些选定的传感器的响应将使用通过黑盒建模方法开发的标称模型在新的负载条件下进行预测。我们使用了美国供热,制冷和空调工程师协会提供的90吨实际离心式冷水机测试设备上的基准数据,以演示和验证我们提出的诊断程序。该数据库由来自27个不同运行模式的冷水机组的64个监控变量的数据组成,这些运行模式在标称状态和8个严重程度不同的故障条件下运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号