首页> 外文期刊>IEEE transactions on automation science and engineering >Adaptive Neuro-Fuzzy Inference System Modeling of MRR and WIWNU in CMP Process With Sparse Experimental Data
【24h】

Adaptive Neuro-Fuzzy Inference System Modeling of MRR and WIWNU in CMP Process With Sparse Experimental Data

机译:稀疏实验数据的CMP过程中MRR和WIWNU的自适应神经模糊推理系统建模

获取原文
获取原文并翻译 | 示例

摘要

Availability of only limited or sparse experimental data impedes the ability of current models of chemical mechanical planarization (CMP) to accurately capture and predict the underlying complex chemomechanical interactions. Modeling approaches that can effectively interpret such data are therefore necessary. In this paper, a new approach to predict the material removal rate (MRR) and within wafer nonuniformity (WIWNU) in CMP of silicon wafers using sparse-data sets is presented. The approach involves utilization of an adaptive neuro-fuzzy inference system (ANFIS) based on subtractive clustering (SC) of the input parameter space. Linear statistical models were used to assess the relative significance of process input parameters and their interactions. Substantial improvements in predicting CMP behaviors under sparse-data conditions can be achieved from fine-tuning membership functions of statistically less significant input parameters. The approach was also found to perform better than alternative neural network (NN) and neuro-fuzzy modeling methods for capturing the complex relationships that connect the machine and material parameters in CMP with MRR and WIWNU, as well as for predicting MRR and WIWNU in CMP.
机译:仅有限或稀疏的实验数据的可用性阻碍了当前化学机械平面化(CMP)模型准确捕获和预测潜在的复杂化学机械相互作用的能力。因此,需要能够有效解释此类数据的建模方法。本文提出了一种使用稀疏数据集预测硅晶片CMP中材料去除率(MRR)和晶片内不均匀性(WIWNU)的新方法。该方法涉及利用基于输入参数空间的减法聚类(SC)的自适应神经模糊推理系统(ANFIS)。线性统计模型用于评估过程输入参数及其相互作用的相对重要性。可以通过微调统计上不太重要的输入参数的隶属函数来实现对稀疏数据条件下CMP行为的预测的显着改进。还发现该方法比替代神经网络(NN)和神经模糊建模方法的性能更好,可捕获将CMP中的机器和材料参数与MRR和WIWNU连接起来的复杂关系,以及预测CMP中的MRR和WIWNU 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号