首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Intelligent Optimal-Setting Control for Grinding Circuits of Mineral Processing Process
【24h】

Intelligent Optimal-Setting Control for Grinding Circuits of Mineral Processing Process

机译:选矿工艺流程的智能优化设定控制

获取原文
获取原文并翻译 | 示例

摘要

During the operation of a grinding circuit (GC) in mineral processing plant the main purpose of control and optimal operation is to control the product quality index, namely the product particle size, into its technically desired ranges. Moreover, the grinding production rate needs to be maximized. However, due to the complex dynamic characteristics between the above two indices and the control loops, such control objectives are difficult to achieve using existing control methods. The complexity is reflected by the existence of process heavy nonlinearities, strong coupling and large time variations. As a result, the lower level loop control with human supervision is still widely used in practice. However, since the setpoints to the involved control loops cannot be accurately adjusted under the variations of the boundary conditions, the manual setpoints control cannot ensure that the actual production indices meet with technical requirements all the time. In this paper, an intelligent optimal-setting control (IOSC) approach is developed for a typical two-stage GC so as to optimize the production indices by auto-adjusting on line the setpoints of the control loops in response to the changes in boundary conditions. This IOSC approach integrates case-based reasoning (CBR) pre-setting controlling, neural network (NN)-based soft-sensor and fuzzy adjusting into one efficient control model. Although each control element is well known, their innovative combination can generate better and more reliable performance. Both industrial experiments and applications show the validity and effectiveness of the proposed IOSC approach and its bright application foreground in industrial processes with similar features.
机译:在选矿厂的研磨回路(GC)运行期间,控制和最佳运行的主要目的是将产品质量指标(即产品粒度)控制在其技术要求的范围内。而且,磨削生产率需要最大化。但是,由于上述两个指标与控制回路之间复杂的动态特性,使用现有的控制方法很难实现这样的控制目标。过程复杂性的非线性,强耦合和较大的时间变化反映了复杂性。因此,在实践中仍广泛使用带有人工监督的下级回路控制。但是,由于在边界条件的变化下不能精确地调整相关控制回路的设定值,因此手动设定值控制无法确保实际的生产指标始终满足技术要求。本文针对典型的两级GC开发了一种智能的最佳设置控制(IOSC)方法,以便通过根据边界条件的变化自动调整控制回路的设定值来优化生产指标。这种IOSC方法将基于案例的推理(CBR)预设控制,基于神经网络(NN)的软传感器和模糊调整集成到一个有效的控制模型中。尽管每个控制元件都是众所周知的,但它们的创新组合可以产生更好,更可靠的性能。工业实验和应用都表明了所提出的IOSC方法的有效性和有效性,并且在具有相似功能的工业过程中具有广阔的应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号