首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Nonparametric and Semi-Parametric Sensor Recovery in Multichannel Condition Monitoring Systems
【24h】

Nonparametric and Semi-Parametric Sensor Recovery in Multichannel Condition Monitoring Systems

机译:多通道状态监测系统中的非参数和半参数传感器恢复

获取原文
获取原文并翻译 | 示例

摘要

Condition monitoring (CM) has been recognized as a more effective failure prevention paradigm than the time-based counterpart. CM can be performed via an array of sensors providing multiple, real-time equipment degradation information with broad coverage. However, loss of sensor readings due to sensor abnormalities and/or malfunction of connectors has long been a hurdle to reliable fault diagnosis and prognosis in multichannel CM systems. The problem becomes more challenging when the sensor channels are not synchronized because of different sampling rates used and/or time-varying operational schemes. This paper provides a nonparametric sensor recovery technique and a semi-parametric alternative to enhance the robustness of multichannel CM systems. Based on historical data, models for all the sensor signals are constructed using functional principal component analysis (FPCA), and functional regression (FR) models are developed for those correlated signals. These models with parameters updated in online implementation can be used to recover the lost sensor signals. A case study of aircraft engines is used to demonstrate the capability of the proposed approaches. In addition to recovering asynchronous sensor signals, the proposed approaches are also compared with the Elman neural network as a popular alternative in recovering synchronous sensor signals.
机译:状态监视(CM)被认为是比基于时间的监视方法更有效的故障预防范例。可以通过传感器阵列执行CM,该传感器阵列可提供覆盖范围广泛的多个实时设备降级信息。但是,由于传感器异常和/或连接器故障而导致的传感器读数损失长期以来一直是多通道CM系统中可靠的故障诊断和预后的障碍。当由于使用的不同采样率和/或随时间变化的操作方案而导致传感器通道不同步时,该问题将变得更具挑战性。本文提供了非参数传感器恢复技术和半参数替代方案,以增强多通道CM系统的鲁棒性。基于历史数据,使用功能主成分分析(FPCA)构建所有传感器信号的模型,并为那些相关信号开发功能回归(FR)模型。这些具有在线实施中更新的参数的模型可用于恢复丢失的传感器信号。飞机发动机的案例研究用于证明所提出方法的能力。除了恢复异步传感器信号外,还将所提出的方法与Elman神经网络进行了比较,将其作为恢复同步传感器信号的一种流行替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号