首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >An Information-Based Approach to Compute Similarity Between Engineering Changes
【24h】

An Information-Based Approach to Compute Similarity Between Engineering Changes

机译:一种基于信息的工程变更之间相似度计算方法

获取原文
获取原文并翻译 | 示例

摘要

Utilizing past Engineering Change (EC) knowledge to predict the impact of a proposed EC effect requires an approach for computing similarity between ECs. This paper presents an approach for computing the similarity between ECs each defined by a set of disparate attributes. Since the available information is probabilistic, measures of information are used for defining measures to compute similarity between two attribute values or ECs. The semantics associated with attribute values are used to compute similarity between them. The similarities between attribute values are aggregated to compute the similarity between ECs in the context of overall goal. An example EC knowledge-base is used for evaluating our approach against a statistical approach and two state-of-the-art approaches, namely, metric space and probability-based. The evaluation is done from two perspectives: precision in retrieving similar ECs and success in predicting the impact. The results show that there is a statistically significant improvement in precision and success rate using our approach as compared to those using other approaches. In addition, based on the results, it can be inferred with 90% confidence that for a large number of changes (N >; 100) the success in predicting impact using our approach shall be greater than that obtained using the two state-of-the-art approaches.
机译:利用过去的工程变更(EC)知识来预测提议的EC效果的影响需要一种计算EC之间相似性的方法。本文提出了一种计算EC之间相似性的方法,每个EC由一组完全不同的属性定义。由于可用信息是概率性的,因此信息度量用于定义度量以计算两个属性值或EC之间的相似性。与属性值关联的语义用于计算它们之间的相似度。汇总属性值之间的相似度,以计算总体目标范围内EC之间的相似度。一个示例EC知识库用于评估我们的方法是否与统计方法和两种最新方法相对应,即度量空间和基于概率。评估从两个角度进行:精确检索相似的EC和成功预测影响。结果表明,与使用其他方法相比,使用我们的方法在准确性和成功率上有统计学上的显着提高。此外,根据结果,可以得出90%的置信度,对于大量变化(N>; 100),使用我们的方法预测影响的成功率应大于使用两种状态下获得的成功率。最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号