首页> 外文期刊>IEEE transactions on automation science and engineering >Large-Scale Estimation in Cyberphysical Systems Using Streaming Data: A Case Study With Arterial Traffic Estimation
【24h】

Large-Scale Estimation in Cyberphysical Systems Using Streaming Data: A Case Study With Arterial Traffic Estimation

机译:利用流数据在电子物理系统中进行大规模估计:以交通流量估计为例

获取原文
获取原文并翻译 | 示例

摘要

Controlling and analyzing cyberphysical and robotics systems is increasingly becoming a Big Data challenge. We study the case of predicting drivers' travel times in a large urban area from sparse GPS traces. We present a framework that can accommodate a wide variety of traffic distributions and spread all the computations on a cluster to achieve small latencies. Our framework is built on Discretized Streams, a recently proposed approach to stream processing at scale. We demonstrate the usefulness of Discretized Streams with a novel algorithm to estimate vehicular traffic in urban networks. Our online EM algorithm can estimate traffic on a very large city network (the San Francisco Bay Area) by processing tens of thousands of observations per second, with a latency of a few seconds.
机译:控制和分析网络物理和机器人系统正日益成为大数据挑战。我们研究了根据稀疏的GPS轨迹预测大城市地区驾驶员出行时间的情况。我们提出了一个框架,该框架可以容纳各种流量分布,并将所有计算分散在群集上以实现较小的延迟。我们的框架基于离散流,这是最近提出的大规模流处理方法。我们用一种新颖的算法证明离散流的有效性,以估算城市网络中的车辆流量。我们的在线EM算法可以通过每秒处理数以万计的观测值(几秒钟的延迟)来估算超大型城市网络(旧金山湾区)上的流量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号