首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Data-Driven Soft-Sensor Modeling for Product Quality Estimation Using Case-Based Reasoning and Fuzzy-Similarity Rough Sets
【24h】

Data-Driven Soft-Sensor Modeling for Product Quality Estimation Using Case-Based Reasoning and Fuzzy-Similarity Rough Sets

机译:基于案例推理和模糊相似粗糙集的数据驱动软传感器建模,用于产品质量评估

获取原文
获取原文并翻译 | 示例

摘要

Efficient operation of the integrated optimization or automation system in an industrial plant depends mainly on good measurement of product quality. However, measuring or estimating the product quality online in many industrial plants is usually not feasible using the available techniques. In this paper, a data-driven soft-sensor using case-based reasoning (CBR) and fuzzy-similarity rough sets is proposed for product quality estimation. Owning to the sustained learning ability, the modeling of a CBR soft-sensor does not need any additional model correction which is otherwise required by the neural network based methods to overcome the slow time-varying nature of industrial processes. Because the conventional $k$-nearest neighbor ( $k$-NN) algorithm is strongly influenced by the value of $k$ , an improved $k$ -NN algorithm with dynamic adjustment of case similarity threshold is proposed to retrieve sufficient matching cases for making a correct estimation. Moreover, considering that the estimation accuracy of the CBR soft-sensor system is closely related to the weights of case feature, a feature weighting algorithm using fuzzy-similarity rough sets is proposed in this paper. This feature weighting method does not require any transcendental knowledge, and its computation complexity is only linear with respect to the number of cases and attributes. The developed soft-sensor system has been successfully applied in a large grinding plant in China. And the application results show that the system has achieved satisfactory estimation accuracy and adaptation ability.
机译:工业工厂中集成优化或自动化系统的有效运行主要取决于对产品质量的良好衡量。但是,使用现有技术,在许多工厂中在线测量或估计产品质量通常是不可行的。本文提出了一种基于案例推理(CBR)和模糊相似粗糙集的数据驱动软传感器,用于产品质量评估。由于具有持续的学习能力,CBR软传感器的建模不需要任何其他模型校正,而基于神经网络的方法则需要其他模型校正来克服工业过程的缓慢时变特性。因为常规 $ k $ -最近的邻居( $ k $ -NN)算法受 $ k $ 的值的强烈影响,提出了一种改进的 $ k $ -NN算法,该算法可以动态调整案例相似性阈值,以检索足够的匹配案例以做出正确的估计。此外,考虑到CBR软传感器系统的估计精度与案例特征的权重密切相关,提出了一种基于模糊相似度粗糙集的特征加权算法。这种特征加权方法不需要任何先验知识,并且其计算复杂度仅与案例和属性的数量成线性关系。所开发的软传感器系统已成功应用于中国的大型研磨厂。应用结果表明,该系统具有令人满意的估计精度和自适应能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号