首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Wearable Sensor-Based Behavioral Anomaly Detection in Smart Assisted Living Systems
【24h】

Wearable Sensor-Based Behavioral Anomaly Detection in Smart Assisted Living Systems

机译:智能辅助生活系统中基于穿戴式传感器的行为异常检测

获取原文
获取原文并翻译 | 示例

摘要

Detecting behavioral anomalies in human daily life is important to developing smart assisted-living systems for elderly care. Based on data collected from wearable motion sensors and the associated locational context, this paper presents a coherent anomaly detection framework to effectively detect different behavioral anomalies in human daily life. Four types of anomalies, including spatial anomaly, timing anomaly, duration anomaly, and sequence anomaly, are detected using a probabilistic theoretical framework. This framework is based on complex activity recognition using dynamic Bayesian network modeling. The maximum-likelihood estimation algorithm and Laplace smoothing are used in learning the parameters in the anomaly detection model. We conducted experimental evaluation in a mock apartment environment, and the results verified the effectiveness of the proposed framework. We expect that this behavioral anomaly detection system can be integrated into future smart homes for elderly care.
机译:检测人类日常生活中的行为异常对于开发智能的老年人护理辅助生活系统非常重要。基于从可穿戴运动传感器收集的数据以及相关的位置背景,本文提出了一种相干异常检测框架,可以有效检测人类日常生活中的各种行为异常。使用概率理论框架检测四种类型的异常,包括空间异常,时序异常,持续时间异常和序列异常。该框架基于使用动态贝叶斯网络建模的复杂活动识别。最大似然估计算法和拉普拉斯平滑算法用于学习异常检测模型中的参数。我们在模拟公寓环境中进行了实验评估,结果验证了所提出框架的有效性。我们希望该行为异常检测系统可以集成到未来的智能家居中,以供老年人护理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号