首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Self-Diagnosis Technique for Virtual Private Networks Combining Bayesian Networks and Case-Based Reasoning
【24h】

Self-Diagnosis Technique for Virtual Private Networks Combining Bayesian Networks and Case-Based Reasoning

机译:贝叶斯网络与案例推理相结合的虚拟专用网自诊断技术

获取原文
获取原文并翻译 | 示例

摘要

Fault diagnosis is a critical task for operators in the context of e-TOM (enhanced Telecom Operations Map) assurance process. Its purpose is to reduce network maintenance costs and to improve availability, reliability and performance of network services. Although necessary, this operation is complex and requires significant involvement of human expertise. The study of the fundamental properties of fault diagnosis shows that the diagnosis process complexity needs to be addressed using more intelligent and efficient approaches. In this paper, we present a hybrid approach that combines Bayesian networks and case-based reasoning in order to overcome the usual limits of fault diagnosis techniques and to reduce human intervention in this process. The proposed mechanism allows the identification of the root cause with a finer precision and a higher reliability. At the same time, it helps to reduce computation time while taking into account the network dynamicity. Furthermore, a study case is presented to show the feasibility and performance of the proposed approach based on a real-world use case: a virtual private network topology.
机译:对于e-TOM(增强的电信运营图)保证流程而言,故障诊断对于运营商而言是至关重要的任务。其目的是减少网络维护成本并提高网络服务的可用性,可靠性和性能。尽管必要,但此操作很复杂,需要大量的人类专业知识。对故障诊断基本特性的研究表明,需要使用更智能,更有效的方法来解决诊断过程的复杂性。在本文中,我们提出了一种混合方法,将贝叶斯网络和基于案例的推理相结合,以克服故障诊断技术的通常局限性,并减少此过程中的人为干预。所提出的机制允许以更高的精度和更高的可靠性来识别根本原因。同时,在考虑网络动态性的同时,它有助于减少计算时间。此外,提出了一个研究案例,以基于现实的用例(虚拟专用网络拓扑)展示所提出方法的可行性和性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号