首页> 外文期刊>IEEE transactions on automation science and engineering >A Hybrid Physics-Based and Data Driven Approach to Optimal Control of Building Cooling/Heating Systems
【24h】

A Hybrid Physics-Based and Data Driven Approach to Optimal Control of Building Cooling/Heating Systems

机译:基于混合物理和数据驱动的建筑物制冷/供暖系统最优控制方法

获取原文
获取原文并翻译 | 示例

摘要

This work integrates a physics-based model with a data driven time-series model to forecast and optimally manage building energy. Physical characterization of the building is partially captured by a collection of zonal energy balance equations with parameters estimated using a least squares estimation (LSE) technique and data initially generated from the EnergyPlus building model. A generalized Cochran–Orcutt estimation technique is adopted to describe the data generated from these simulations. The combined forecast model is then used in a model predictive control (MPC) framework to manage heating and cooling set points. This work is motivated by the practical limitations of simulation-based optimizations. Once the forecast model is established capturing sufficient statistical variability and physical behavior of the building, there will be no more need to run EnergyPlus in the optimization routine.
机译:这项工作将基于物理的模型与数据驱动的时间序列模型集成在一起,以预测和优化管理建筑能耗。建筑物的物理特征部分由区域能源平衡方程式的集合来捕获,这些方程式的参数使用最小二乘估计(LSE)技术估计,并且最初从EnergyPlus建筑物模型生成数据。采用通用的Cochran-Orcutt估计技术来描述从这些模拟生成的数据。然后,将组合的预测模型用于模型预测控制(MPC)框架中,以管理加热和冷却设定点。这项工作是受基于仿真的优化的实际局限性驱使的。一旦建立了预测模型,即可捕获建筑物的足够统计差异和物理行为,那么就不再需要在优化例程中运行EnergyPlus。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号