首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Parameter Estimation in Softmax Decision-Making Models With Linear Objective Functions
【24h】

Parameter Estimation in Softmax Decision-Making Models With Linear Objective Functions

机译:具有线性目标函数的Softmax决策模型中的参数估计

获取原文
获取原文并翻译 | 示例

摘要

We contribute to the development of a systematic means to infer features of human decision-making from behavioral data. Motivated by the common use of softmax selection in models of human decision-making, we study the maximum-likelihood (ML) parameter estimation problem for softmax decision-making models with linear objective functions. We present conditions under which the likelihood function is convex. These allow us to provide sufficient conditions for convergence of the resulting ML estimator and to construct its asymptotic distribution. In the case of models with nonlinear objective functions, we show how the estimator can be applied by linearizing about a nominal parameter value. We apply the estimator to fit the stochastic Upper Credible Limit (UCL) model of human decision-making to human subject data. The fits show statistically significant differences in behavior across related, but distinct, tasks.
机译:我们致力于开发一种系统的方法,以从行为数据中推断出人类决策的特征。基于softmax选择在人类决策模型中的普遍使用,我们研究了具有线性目标函数的softmax决策模型的最大似然(ML)参数估计问题。我们提出了似然函数为凸的条件。这些使我们能够为合成的ML估计量的收敛提供足够的条件,并构造其渐近分布。对于具有非线性目标函数的模型,我们展示了如何通过线性化名义参数值来应用估计量。我们应用估算器以使人类决策的随机可信上限(UCL)模型适合人类受试者数据。拟合显示了相关但截然不同的任务在行为上的统计学显着差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号