首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Online Learning Control of Hydraulic Excavators Based on Echo-State Networks
【24h】

Online Learning Control of Hydraulic Excavators Based on Echo-State Networks

机译:基于回声状态网络的液压挖掘机在线学习控制

获取原文
获取原文并翻译 | 示例

摘要

In some of recent advances in automation of construction equipment, much research has been conducted on the control of hydraulic excavators in both industry and academia for the benefit of safety and efficiency. However, most relevant works have employed model-based control approaches that require a mathematical representation of the target plant. For hydraulic excavators, obtaining a useful dynamic model for control can be challenging due to the nonlinearity of the hydraulic servo system. With this in mind, this paper investigates the feasibility of an online learning control framework based on echo-state networks (ESNs) to the position control of hydraulic excavators. While ESNs are a class of recurrent neural networks, the training of ESNs corresponds to solving a linear regression problem, thus making it suitable for online implementation. By exploiting the dynamic properties of ESNs, the deployed control framework uses the input and output signals of the plant to learn an inverse model, which is then used to simultaneously generate control inputs to track the desired trajectory. Experiments conducted on a 21-ton class hydraulic excavator show the promising results in that accurate tracking is achieved even in the absence of a dynamic model.
机译:在建筑设备自动化的最新进展中,为了安全和高效,在工业界和学术界对液压挖掘机的控制进行了大量研究。但是,大多数相关工作都采用了基于模型的控制方法,这些方法需要对目标植物进行数学表示。对于液压挖掘机,由于液压伺服系统的非线性,因此获得有用的控制动态模型可能会面临挑战。考虑到这一点,本文研究了基于回声状态网络(ESN)的在线学习控制框架对液压挖掘机位置控制的可行性。虽然ESN是一类递归神经网络,但是ESN的训练对应于解决线性回归问题,因此使其适合在线实施。通过利用ESN的动态特性,已部署的控制框架使用工厂的输入和输出信号来学习逆模型,然后将其用于同时生成控制输入以跟踪所需轨迹。在21吨级液压挖掘机上进行的实验显示出令人鼓舞的结果,即使没有动态模型也可以实现精确的跟踪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号