首页> 外文期刊>IEEE transactions on automation science and engineering >A Minimum-Cost Modeling Method for Nonlinear Industrial Process Based on Multimodel Migration and Bayesian Model Averaging Method
【24h】

A Minimum-Cost Modeling Method for Nonlinear Industrial Process Based on Multimodel Migration and Bayesian Model Averaging Method

机译:基于多模型迁移和贝叶斯模型平均法的非线性工业过程的最小成本模拟方法

获取原文
获取原文并翻译 | 示例

摘要

With increasing drastic market competition, establishing an accurate and reliable performance prediction model for control and optimization at a minimum cost is a growing trend in industrial production. This article proposes a minimum-cost modeling method to develop the performance prediction model of a new nonlinear industrial process. The core idea of this approach is to migrate the useful information on multiple old and similar processes to develop a new process model. A multimodel migration strategy is proposed to migrate the useful information by combining the existing nonlinear process models and take full advantage of minimum data from the new nonlinear process. In order to obtain a set of optimal weights for combining the multiple old and similar process models, the Bayesian model averaging method is employed to estimate the contributions of each available old nonlinear process model to the new nonlinear process model. Moreover, a further experiment used nested Latin hypercube design (NLHD) to gather the necessary minimum data on the new nonlinear process for model migration. Finally, we apply the proposed minimum-cost modeling method to the new multistage centrifugal compressor in the combined cycle power plant, and the results show that the proposed method can develop an accurate compressor model at a minimal cost in terms of the amount of new process data. Note to Practitioners-Process optimal control and condition monitoring are vital for the stability and economic operation of industrial processes, and the basis of them is to quickly establish an accurate and reliable process performance prediction model. Traditional methods for developing process performance prediction models often require a large amount of complex calculations and rich process data, which is time- and cost-consuming. In particular, these methods focus only on the current process to be modeled, while ignoring the existing and similar process information, wasting process information. This article presents a minimum-cost modeling method for nonlinear industrial processes, which can make full use of information on multiple similar existing processes to assist the modeling of a new process to reduce the modeling cost of the new process. Specifically, a multimodel migration strategy including Bayesian model averaging is designed to migrate useful information from similar processes to the new process. The nested Latin hypercube design (NLHD) is employed to collect the necessary minimum data on the new nonlinear process. By applying the proposed approach to the industrial nonlinear process, it is possible to achieve the accurate performance prediction model with minimal new process data.
机译:随着巨大的市场竞争,以最低成本建立控制和优化的准确可靠的性能预测模型是工业生产的日益增长的趋势。本文提出了一种最低成本建模方法,开发了一种新型非线性工业过程的性能预测模型。这种方法的核心思想是迁移有关多个旧的和类似过程的有用信息来开发新的过程模型。建议通过组合现有的非线性流程模型来迁移有用信息,并从新的非线性过程中充分利用最小数据来迁移有用信息。为了获得一组最佳权重的用于组合多个旧和类似的过程模型,采用贝叶斯模型平均方法来估计每个可用老非线性过程模型的新的非线性过程模型的贡献。此外,进一步的实验使用了嵌套的拉丁超级设计(NLHD)来收集关于模型迁移的新非线性过程的必要最小数据。最后,我们将所提出的最低价格建模方法应用于组合循环发电厂的新型多级离心压缩机,结果表明,该方法可以在新过程的数量下以最小的成本开发精确的压缩机模型数据。注意对于从业者来说,最佳控制和状态监测对于工业过程的稳定性和经济运行至关重要,它们的基础是快速建立准确且可靠的过程性能预测模型。用于开发过程性能预测模型的传统方法通常需要大量的复杂计算和丰富的过程数据,这是时间和成本的。特别是,这些方法仅关注要建模的当前过程,同时忽略现有和类似的过程信息,浪费处理信息。本文提出了一种用于非线性工业过程的最低成本建模方法,可以充分利用有关多个类似现有过程的信息,以帮助建模新过程以降低新过程的建模成本。具体地,包括贝叶斯模型平均在内的多模型迁移策略旨在将有用的信息从类似的过程迁移到新过程。嵌套的拉丁式超级设计(NLHD)用于收集新的非线性过程的必要最小数据。通过将所提出的方法应用于工业非线性过程,可以实现具有最小新过程数据的准确性能预测模型。

著录项

  • 来源
  • 作者单位

    China Univ Min & Rechnol Engn Res Ctr Intelligent Control Underground Spac Minist Educ Xuzhou 221116 Jiangsu Peoples R China|State Key Lab Proc Automat Min & Met Beijing 100160 Peoples R China|Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100080 Peoples R China|China Univ Min & Technol Natl Engn Res Ctr Coal Preparat & Purificat Xuzhou 221116 Jiangsu Peoples R China|Xuzhou Key Lab Artificial Intelligence & Big Data Xuzhou 221116 Jiangsu Peoples R China;

    Northeastern Univ Coll Informat Sci & Engn Shenyang 110004 Peoples R China;

    China Univ Min & Rechnol Engn Res Ctr Intelligent Control Underground Spac Minist Educ Xuzhou 221116 Jiangsu Peoples R China|China Univ Min & Technol Sch Informat & Control Engn Xuzhou 221116 Jiangsu Peoples R China;

    Northeastern Univ Coll Informat Sci & Engn Shenyang 110004 Peoples R China|Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China;

    China Univ Min & Rechnol Engn Res Ctr Intelligent Control Underground Spac Minist Educ Xuzhou 221116 Jiangsu Peoples R China|China Univ Min & Technol Sch Informat & Control Engn Xuzhou 221116 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Predictive models; Data models; Adaptation models; Process control; Computational modeling; Integrated circuit modeling; Bayes methods; Bayesian model averaging (BMA); minimum cost; multimodel migration; nonlinear; performance prediction;

    机译:预测模型;数据模型;适应模型;过程控制;计算建模;集成电路建模;贝叶斯方法;贝叶斯模型平均(BMA);最小成本;多模型;非线性;性能预测;性能预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号