首页> 外文期刊>IEEE transactions on automation science and engineering >Multiobjective Bike Repositioning in Bike-Sharing Systems via a Modified Artificial Bee Colony Algorithm
【24h】

Multiobjective Bike Repositioning in Bike-Sharing Systems via a Modified Artificial Bee Colony Algorithm

机译:通过修改的人工蜂菌落算法在自行车共享系统中重新定位

获取原文
获取原文并翻译 | 示例

摘要

With the expansion of the sharing economy, growing urban traffic, and increasing environmental pollution, bike-sharing systems (BSSs) are developing rapidly all over the world. A major operational issue in BSS is to reposition the bikes over time such that enough bikes and open parking slots are available to users. Especially during peak hours, it is essential to stabilize BSS in use. To cope with the issue, this article proposes a new approach integrating multiobjective optimization and a weighting factor based on the shortage event types of each station. In addition, the multiobjective artificial bee colony algorithm is modified according to the features of this work to find optimal solutions. The proposed approach is applied to the real-life repositioning of a BSS during peak hours to verify its feasibility and effectiveness. Also, the algorithm is compared with other frequently used multiobjective algorithms. For the comparative study, convergence metric and spacing are adopted to further measure the algorithm performance. The scalability of the proposed approach in addressing the multiobjective repositioning problems during peak hours is also verified by multiple trials. Note to Practitioners-This work deals with bike repositioning in bike-sharing systems (BSSs) during peak hours, which has major significance in the efficient operation of such systems. It builds a multiobjective optimization model and solves it through a modified multiobjective artificial bee colony algorithm. The existing single-objective optimization methods fail to solve the concerned problem. This work can find the optimal routes of the repositioning vehicles along with the number of desired parked bikes of corresponding stations. The experimental results indicate that the proposed method is highly effective and can greatly and readily help decision-makers better manage the BSS of a practical size.
机译:随着分享经济的扩大,不断增长的城市交通,增加环境污染,自行车分享系统(BSSS)正在全世界迅速发展。 BSS中的一个主要运营问题是随着时间的推移重新定位自行车,这使得用户可以使用足够的自行车和开放式停车位。特别是在高峰时段,必须稳定使用BSS。为了应对这个问题,本文提出了一种基于每个站的短缺事件类型的多目标优化和加权因子的新方法。此外,根据这项工作的特征来修改多目标人造蜂菌落算法,以找到最佳解决方案。所提出的方法应用于高峰时段期间对BSS的真实重新定位,以验证其可行性和有效性。此外,将该算法与其他常用的多目标算法进行比较。对于比较研究,采用收敛度量和间距来进一步测量算法性能。通过多次试验还验证了在高峰时段内解决多目标重新定位问题时所提出的方法的可扩展性。从业者的注意事项 - 这项工作在高峰时段内的自行车共享系统(BSSS)中的自行车重新定位,在这种系统的有效运行中具有重要意义。它构建了一个多目标优化模型,并通过修改的多目标人工蜂菌落算法解决了它。现有的单目标优化方法未能解决有关的问题。这项工作可以找到重新定位车辆的最佳路线以及相应站的所需停放自行车的数量。实验结果表明,该方法具有高效,可以大大易于帮助决策者更好地管理实际规模的BSS。

著录项

  • 来源
  • 作者单位

    Jilin Univ Transportat Coll Changchun 130022 Peoples R China;

    Jilin Univ Transportat Coll Changchun 130022 Peoples R China;

    Jilin Univ Transportat Coll Changchun 130022 Peoples R China|Shandong Univ Coll Mech Engn Jinan 250061 Peoples R China|Shandong Univ Key Lab High Efficiency & Clean Mech Manufacture Minist Educ Jinan 250061 Peoples R China;

    New Jersey Inst Technol Dept Elect & Comp Engn Newark NJ 07102 USA|Macau Univ Sci & Technol Inst Syst Engn Macau 999078 Peoples R China;

    Zhejiang Univ State Key Lab Fluid Power Transmiss & Control Hangzhou 310027 Peoples R China;

    Macau Univ Sci & Technol Inst Syst Engn Macau 999078 Peoples R China|Xidian Univ Sch Electromech Engn Xian 710071 Peoples R China;

    Univ Alberta Dept Civil & Environm Engn Edmonton AB T6G 2W2 Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Artificial bee colony (ABC) algorithm; bike-sharing system (BSS); multiobjective optimization; repositioning;

    机译:人造蜜蜂殖民地(ABC)算法;自行车共享系统(BSS);多目标优化;重新定位;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号