首页> 外文期刊>IEEE transactions on automation science and engineering >Data-Driven Predictive Probability Density Function Control of Fiber Length Stochastic Distribution Shaping in Refining Process
【24h】

Data-Driven Predictive Probability Density Function Control of Fiber Length Stochastic Distribution Shaping in Refining Process

机译:纤维长度随机分布在精炼过程中的数据驱动预测概率密度控制

获取原文
获取原文并翻译 | 示例

摘要

Pulp is the most important raw material in paper industries, whose fiber length stochastic distribution (FLSD) shaping directly determines the energy consumption and paper quality of the subsequent papermaking processes. However, the mean and variance are insufficient to describe the FLSD shaping, which displays non-Gaussian distributional properties. Therefore, the traditional control method based on the mean and variance of the fiber length is difficult to control the FLSD shaping effectively. In this article, a novel data-driven predictive probability density function (PDF) control method is proposed for the FLSD shaping in the refining process. First, the PDF of FLSD shaping is approximated by a radial basis function neural network (RBF-NN) and the parameters of each RBF basis function are tuned by using an iterative learning law. Second, the random vector functional link network (RVFLN)-based data-driven modeling method is employed to construct the prediction model of the weight vector. Consequently, the predictive controller is designed based on the constructed PDF model of the FLSD shaping in the refining process and the stability issue of the resulted closed-loop system is discussed. The experiments using industrial data are given to illustrate the effectiveness of the proposed method. Note to Practitioners-Pulp quality control in the refining process plays a critical role in the optimization of product quality and energy saving in the pulping and papermaking processes. Different from the conventional control method based on the mean and variance of the fiber length, a novel data-driven predictive PDF control method is proposed for the non-Gaussian stochastic distribution dynamic characteristics of the fiber length, which is used to achieve the desired PDF shaping of fiber length distribution. This kind of novel control method includes the control of the traditional mean and variance of the fiber length in some sense and has applications that are more extensive.
机译:纸浆是造纸工业中最重要的原材料,其纤维长度随机分布(FLSD)成型直接确定随后的造纸过程的能量消耗和纸张质量。然而,平均值和方差不足以描述显示非高斯分布特性的FLSD成型。因此,基于纤维长度的平均值和方差的传统控制方法难以有效地控制FLSD整形。在本文中,提出了一种新的数据驱动预测概率密度函数(PDF)控制方法,用于精炼过程中的FLSD整形。首先,通过辐射基本函数神经网络(RBF-NN)来近似FLSD整形的PDF,并且通过使用迭代学习法调整每个RBF基函数的参数。其次,采用随机向量功能链路网络(RVFLN)基于数据驱动的建模方法来构建重量向量的预测模型。因此,基于精炼过程中的FLSD成形的构建的PDF模型设计了预测控制器,并且讨论了所得到的闭环系统的稳定性问题。使用工业数据的实验说明所提出的方法的有效性。注释对精炼过程中的从业者 - 纸浆质量控制在制浆和造纸过程中的产品质量和节能的优化中起着关键作用。与基于纤维长度的平均值和方差的传统控制方法不同,提出了一种用于纤维长度的非高斯随机分布动态特性的新型数据驱动的预测PDF控制方法,用于达到所需的PDF纤维长度分布的整形。这种新颖的控制方法包括在某种意义上控制纤维长度的传统平均值和方差,并且具有更广泛的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号