首页> 外文期刊>IEEE transactions on automation science and engineering >Variance Minimization Hedging Analysis Based on a Time-Varying Markovian DCC-GARCH Model
【24h】

Variance Minimization Hedging Analysis Based on a Time-Varying Markovian DCC-GARCH Model

机译:基于时变马尔维亚DCC-GARCH模型的差异最小化对冲分析

获取原文
获取原文并翻译 | 示例

摘要

Considering time-varying transition probability (TVTP), this article combines Markov regime switching with a dynamic conditional correlation generalized autoregressive conditional heteroscedasticity (DCC-GARCH) model to construct a new hedging model and study a state-dependent minimum variance hedging ratio. A two-stage maximum likelihood method is constructed to estimate the model parameters. A filtering algorithm is used in an estimation process. Empirical results on commodity futures hedging show that compared with other benchmark models, the proposed one has the best fitting effect. In addition, in terms of hedging effectiveness, the proposed model is superior to other models in most cases, which means that introducing TVTP into a DCC-GARCH model can effectively improve the performance of hedging portfolio. Note to Practitioners-This article deals with a state-dependent minimum variance hedging problem. It combines a time-varying Markov regime switching with dynamic conditional correlation generalized autoregressive conditional heteroscedasticity named DCC-GARCH to construct a new hedging model and estimates a state-dependent hedging ratio. Empirical results from commodity futures hedging show that introducing TVTP into the DCC-GARCH model can effectively reduce portfolio risk and provide better hedging performance than other traditional models, including Markov regime switching DCC-GARCH with a fixed transition probability, DCC-GARCH, ordinary least squares, naive hedging strategies, and unhedged spots. Thus, this article is of guiding significance for hedgers to fully learn the hedging rules of futures market and avoid the spots price risk.
机译:考虑到时变的转换概率(TVTP),本文将马尔可夫政权切换与动态条件相关性广义自回归条件异染性(DCC-GARCH)模型相结合,以构建新的对冲模型,并研究状态依赖性最小方差对冲比。构建了两级最大似然方法以估计模型参数。在估计过程中使用过滤算法。商品期货对冲展示的经验结果表明,与其他基准模型相比,建议的效果最佳。此外,在对冲效率方面,在大多数情况下,所提出的模型优于其他模型,这意味着将TVTP引入DCC-GARCH模型可以有效地提高套期保值组合的性能。向从业者注意 - 本文涉及国家依赖的最低方差对冲问题。它结合了具有名为DCC-GARCH的动态条件相关性通用条件异染性的时变马尔可夫政权切换,以构建新的对冲模型并估计状态依赖的对冲比。商品期货对冲的经验结果表明,将TVTP引入DCC-GARCH模型可以有效地减少投资组合风险,并提供比其他传统模型更好的对冲性能,包括Markov政权切换DCC-GARCH,具有固定的过渡概率,DCC-GARCH,普遍存在广场,天真的对冲策略和受害者的斑点。因此,本文对审计员来说是指导意义,以全面了解期货市场的对冲规则,避免斑点价格风险。

著录项

  • 来源
  • 作者单位

    Northeastern Univ Qinhuangdao Sch Econ Qinhuangdao 066004 Hebei Peoples R China|Northeastern Univ Sch Business Adm Shenyang 110819 Peoples R China;

    New Jersey Inst Technol Dept Elect & Comp Engn Newark NJ 07102 USA|Macau Univ Sci & Technol Inst Syst Engn Macau 999078 Peoples R China;

    Northeastern Univ Sch Business Adm Shenyang 110819 Peoples R China;

    New Jersey Inst Technol Dept Elect & Comp Engn Newark NJ 07102 USA|Liaoning Shihua Univ Coll Comp & Commun Engineer Ing Fushun 113001 Peoples R China;

    Shandong Univ Sci & Technol Dept Comp Sci & Technol Qingdao 266590 Peoples R China;

    Hebei Univ Environm Engn Coll Econ Qinhuangdao 066102 Hebei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Markov processes; Switches; Correlation; Estimation; Indexes; Computational modeling; Big data; hedging; Markov regime switching (MRS); time series; time-varying transition probability (TVTP);

    机译:马尔可夫进程;转换;相关;估计;索引;计算建模;大数据;套期保值;马尔可夫政权切换(MRS);时间序列;时间序列;时间序列;时序;时间序列;时间序列;时序;时间序列;时间序列;时间序列;时间序列;时间序列;时间序列;时间序列;时间序列;时间序列;时序;时间序列;时间序列;时间序列;时间序列;时间序列;时间序列;时间序列;时差过渡​​概率(TVTP);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号