首页> 外文期刊>IEEE transactions on automation science and engineering >Real-Time Detection of Fall From Bed Using a Single Depth Camera
【24h】

Real-Time Detection of Fall From Bed Using a Single Depth Camera

机译:使用单个深度摄像头实时检测从床上跌落

获取原文
获取原文并翻译 | 示例

摘要

Toward the medical and living healthcare for the elderly and patients, fall from bed is a critical accident that may lead to serious injuries. To alleviate this, an essential problem is to detect this event in time for earning the rescue time. Although some efforts that resort to the wearable devices and smart healthcare room have already been paid to address this problem, the performance is still not satisfactory enough for the practical applications. In this paper, a novel fall from a bed detection method is proposed. In particular, the depth camera is used as the visual sensor due to its insensitivity to illumination variation and capacity of privacy protection. To characterize the human activity well, an effective human upper body detection approach able to extract human head and upper body center is proposed using random forest. Compared with the existing widely used human body parsing methods (e.g., Microsoft Kinect SDK or OpenNI SDK), our proposition can still work reliably when human bed interaction happens. According to the motion information of human upper body, the fall from bed detection task is formulated as a two-class classification problem. Then, it is solved using the large margin nearest neighbor classification approach. Our method can meet the real-time running requirement with the normal computer. In experiments, we construct a fall from bed detection data set that contains the samples from 42 volunteers (26 males and 16 females) for test. The experimental results demonstrate the effectiveness and efficiency of our proposition.Note to Practitioners This paper aims to develop the vision-based surveillance system to automatically detect fall from bed in real time under the unconstrained conditions. This cannot be well handled by using wearable devices. Our proposition can be used to construct a smart healthcare room. It is worth noting that the proposed system is insensitive to illumination variation and capable of protecting privacy due to the use of depth camera. The proposed human body extraction method is able to address the human bed interaction well. An effective motion pattern categorization approach is applied to ensure the good separation between fall from bed and the other activities. According to the extensive experiments under the laboratory and sickroom environments, our fall from bed detection method generally can achieve acceptable result with high efficiency. Nevertheless, it is still somewhat sensitive to noise within the depth frames. In addition, when serious human quilt interaction happens, the performance of human body extraction procedure is not satisfactory enough.
机译:为了老年人和患者的医疗和生活保健,从床上掉下是严重事故,可能导致严重伤害。为了减轻这种情况,一个基本问题是及时检测到此事件以赢得救援时间。尽管已经为解决此问题付出了一些可穿戴设备和智能医疗室的努力,但对于实际应用而言,性能仍然不够令人满意。在本文中,提出了一种新颖的跌落检测方法。特别地,由于深度相机对照明变化不敏感并且具有隐私保护能力,因此其被用作视觉传感器。为了很好地描述人类活动,提出了一种使用随机森林的有效人类上身检测方法,该方法可以提取人的头部和上身中心。与现有的广泛使用的人体解析方法(例如Microsoft Kinect SDK或OpenNI SDK)相比,我们的主张在发生人床互动时仍然可以可靠地工作。根据人体上半身的运动信息,将跌倒床检测任务表述为两类分类问题。然后,使用大余量最近邻分类方法进行求解。我们的方法可以满足普通计算机的实时运行要求。在实验中,我们从床铺检测数据集中构建了一个下降数据集,其中包含来自42位志愿者(26位男性和16位女性)的样本进行测试。实验结果证明了我们的命题的有效性和有效性。从业者注意本文旨在开发一种基于视觉的监视系统,以在不受限制的条件下实时自动检测床下坠落。使用可穿戴设备无法很好地处理此问题。我们的建议可用于构建智能医疗室。值得注意的是,由于使用深度相机,因此建议的系统对光照变化不敏感,并且能够保护隐私。所提出的人体提取方法能够很好地解决人床相互作用。一种有效的运动模式分类方法可确保从床上跌落和其他活动之间的良好隔离。根据在实验室和病房环境下进行的大量实验,我们从床层检测方法中脱颖而出通常可以高效地获得可接受的结果。然而,它仍然对深度帧内的噪声敏感。另外,当严重的人被子相互作用发生时,人体提取程序的性能还不够令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号